IJPAM: Volume 112, No. 3 (2017)

Title

ON AUTOMATIC SURJECTIVITY OF SPECTRUM
PRESERVING ADDITIVE TRANSFORMATIONS

Authors

El Houcine El Bouchibti
Polydisciplinary Faculty - Taroudant
Ibno Zohr university
B.P. 271, CP 83000, Hay Lastah Taroudant, MOROCCO

Abstract

Let $X$ and $Y$ be an infinite dimensional complex Banach spaces and let $\Phi:B(X)\longrightarrow B(Y)$ be a spectrum preserving additive transformation. We show that if the range of $\Phi$ contains the ideal of finite rank operators of $B(Y)$, then either $\Phi(T)=ATA^{-1}$ or $\Phi(T)=BT^{*}B^{-1}$ for every $T\in B(X)$, where $A:X\longrightarrow Y$ and $B:X'\longrightarrow Y$ are linear bounded isomorphisms.

History

Received: April 29, 2016
Revised: November 15, 2016
Published: February 9, 2017

AMS Classification, Key Words

AMS Subject Classification: 15A04, 15A86, 47B48, 47B49
Key Words and Phrases: linear preserver problem, trace, operator algebra, analytic functions

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
M. Ech-chérif El Kettani and E.El Bouchibti, Sur les transformations additives qui consevent le spectre ponctuel, Extracta Mathematicae, 16, No. 3 (2001), 343-349.

2
Mustapha Ech-chérif El Kettani and EL Houcine El Bouchibti, Sur les transformations additives qui conservent le spectre de surjection, Extracta Mathematicae, 18, No 1 (2003), 57-64.

3
Mustapha Ech-chérif El Kettani and EL Houcine El Bouchibti, On automatic surjectivity of some additive transformations, Proyecciones, 23, No. 2 (2004), 111-121.

4
Mustapha Ech-chérif El Kettan and Hassane Benbouziane, Surjective maps preserving local spectral radius, Internationan Mathematical Forum, 9, No. 11 (2014), 515-522.

5
B. Aupetit, Une généralisation du théorème de Gleason-Kahane-Zelazko pour les algèbres de Banach, Pacific. J. Math., 85 (1979), 11-17.

6
B. Aupetit, H. du Toit Mouton, Trace and determinant in Banach algebras, Studia Math., 121 (1996), 115-136.

7
B. Aupetit, Sur les transformations qui conservent le spectre, Banach Algebras, 97, De Gryter, Berlin (1998), 55-78.

8
B. Aupetit, A Primer on Spectral Theory, Springer, New-York, 1991.

9
M. Bre$\check s$ar and P. $\check S$emrl, Linear maps preserving the spectral radius, J. Funct. Anal., 142 (1996), 360-168.

10
Fillmore, Sums of operators with square-zero, Acta. Sci. Math. Szeged., 28 (1967), 285-288.

11
A.A. Jafarian and A.R. Sourour, Spectrum preserving linear maps, J. Funct. Anal., 66 (1986), 255-261.

12
M. Omladi$\check c$, P. $\check S$emrl, Spectrum preserving additive maps, Linear. Algebras Appl., 153 (1991), 67-72.

13
M. Omladi$\check c$, P. $\check S$emrl, Additive mapping preserving operators of rank one, Linear. Algebra. App., 182 (1993), 239-256.

14
W. Rudin, Functional Analysis, McGraw-Hill, Second Edition, 1991.

15
P. $\check S$emrl , Spectrally bounded linear maps on $B(H)$, Quat. J. Math., Oxford, 49 (1998), 87-92.

16
P. $\check S$emrl, Linear maps that preserve the nilpotent operators, Acta. Sci. Math., 61 (1995), 523-534.

17
S. Sakai, $C^{*}$-Algebras and $W^{*}$-Algebras, Springer, New-York, 1971.

18
A.R. Sourour, Invertibility preserving linear maps on ${\cal L}(X)$, Trans. Amer. Soc., 348 (1996), 13-30.

How to Cite?

DOI: 10.12732/ijpam.v112i3.4 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 112
Issue: 3
Pages: 489 - 496


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).