IJPAM: Volume 112, No. 3 (2017)

Title

THE ONSET OF TRAFFIC PHASES IN HIGHWAYS:
A TWO VEHICLE-CLASS MACROSCOPIC MODEL

Authors

A.R. Méndez$^1$, R.M. Velasco$^2$
$^1$Departamento de Matemáticas Aplicadas y Sistemas
Universidad Autonoma Metropolitana
Cuajimalpa, MEXICO
$^2$Departamento de Física
Universidad Autonoma Metropolitana
Iztapalapa, MEXICO

Abstract

The over-acceleration and adaptation effects in a two vehicle-class mixture of aggressive drivers is studied. A first order model for each vehicle-class is constructed through a kinetic model equation and an iterative procedure. The constructed model is numerically solved with different parameters and under several initial conditions. Numerical results show the onset of the Kerner's phase and suggest that besides the drivers' aggressivity, the most relevant aspect in the adaptation process is the existence of a more numerous vehicle-class.

History

Received: September 30, 2016
Revised: December 25, 2016
Published: February 9, 2017

AMS Classification, Key Words

AMS Subject Classification: 82D05
Key Words and Phrases: traffic flow model, mathematical modelling, kinetic theory

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
B. D. Greenshields, A study of traffic capacity, In Proceedings of the High-way Research Board, 14 (1935), 448-477.

2
B. S. Kerner, The Physics of Traffic, Understanding Complex Systems, Springer, Heidelberg (2004), doi: https://doi.org/10.1007/978-3-540-40986-1.

3
B. S. Kerner, Introduction to Modern Traffic Flow Theory and Control, Springer-Verlag, Berlin (2009), doi: https://doi.org/10.1007/978-3-642-02605-8.

4
M. Treiber and A. Kesting, Traffic Flow Dynamics, Springer-Verlag (2013).

5
D. Helbing, Traffic and related self-driven many-particle systems, Rev. Mod. Phys., 73, No. 4 (2001),1067-1141, doi: https://doi.org/10.1007/978-3-642-32460-4.

6
D. Chowdhury and A. Schadsneider, Simulation of vehicular traffic: A statistical physics perspective, Comput. Sci. Eng., 2, No. 5 (2000), 80-87, doi: https://doi.org/10.1109/5992.877404.

7
S. Maerivoet and B. De Moor, Cellular automata models of road traffic, Phys. Rep., 419, No. 1 (2005), 1-64, doi: https://doi.org/10.1016/j.physrep.2005.08.005.

8
R. Mahnke, J. Kaupuzs and I. Lubashevsky, Probabilistic description of traffic flow, Phys. Rep., 408, No. 1-2 (2005), 1-130, doi: https://doi.org/10.1016/j.physrep.2004.12.001.

9
B. S. Kerner, Criticism of generally accepted fundamentals and method-ologies of traffic and transportation theory: A brief review, Physica A, 392, No. 21 (2013), 5261-5282, doi: https://doi.org/10.1016/j.physa.2013.06.004.

10
B. S. Kerner, S. L. Klenov and A. Hiller, Criterion for phases in singe vehicle data and empirical test of a microscopic three-phase traffic theory, J. Phys. A: Math. Gen., 39, No. 9 (2006), 2001-2020, doi: https://doi.org/10.1088/0305-4470/39/9/002.

11
B. S. Kerner, S. L. Klenov and P. Konhauser, Asymptotic theory of traffic jams, Phys, Rev. E, 56, No.4 (1997), 4200-4216, doi: https://doi.org/10.1103/PhysRevE.56.4200.

12
M. Treiber, A. Kesting and D. Helbing, Three-phase traffic theory and two-phase models with a fundamental diagram in the light of empirical stylized facts, Transp. Res. B, 44, No. 8-9 (2010), 983-1000, doi: https://doi.org/10.1016/j.trb.2010.03.004.

13
M. Schonhof and D. Helbing, Criticism of three-phase traffic theory, Transp. Res. Part B, 43, No. 7 (2009), 784-797, doi: https://doi.org/10.1016/j.trb.2009.02.004.

14
I. Prigogine and R. Herman, Kinetic Theory of Vehicular Traffic, Elsevier, New York-London-Amsterdam (1971).

15
S. L. Paveri-Fontana, On boltzmann-like treatments for traffic flow: A critical review of the basic model and an alternative proposal for dilute traffic analysis, Transp. Res., 9 (1975), 225-235, doi: https://doi.org/10.1016/0041-1647(75)90063-5.

16
C. Wagner, C. Hoffmann, R. Sollacher, J. Wagenhuber and B. Schurmann, Second-order continuum traffic flow model, Phys. Rev. E, 54, No. 5 (1996), 5073-5085, doi: https://doi.org/10.1103/PhysRevE.54.5073.

17
D. Helbing, Improved fluid-dynamic model for vehicular traffic, Phys. Rev. E, 51, No. 4 (1995), 3164-3169, doi: https://doi.org/10.1103/PhysRevE.51.3164.

18
S. P. Hoogendoorn and P. H. L. Bovy, Generic gas-kinetic traffic systems modeling with applications to vehicular traffic flow, Transp. Res. Part B, 35 No. 4 (2001), 317-336, doi: https://doi.org/10.1016/S0191-2615(99)00053-3.

19
R. M. Velasco and W. Marques Jr., Navier-stokes-like equations for traffic flow, Phys. Rev. E, 72 No. 4 (2005), 046102, doi: https://doi.org/10.1103/PhysRevE.72.046102.

20
A. Bellouquid, E. De Angelis and L. Fermo. Towards the modeling of vehicular traffic as a complex system: A kinetic theory approach, Math. Models Methods Appl. Sci., 22, No. Supp 01 (2012), 1140003, doi: https://doi.org/10.1142/S0218202511400033.

21
A. R. Méndez and R. M. Velasco, Kerner’s free-synchronized phase transi-tion in a macroscopic traffic flow model with two class of drivers, J. Phys. A: Math. Theor., 46, No. 46 (2013), 1-9, doi: https://doi.org/10.1088/1751-8113/46/46/462001.

22
L. Fermo and A. Tosin, A fully-discrete-state kinetic theory approach to modeling vehicular traffic, SIAM J. Appl. Math., 73 No. 4 (2013), 1533-1556, doi: https://doi.org/10.1137/120897110.

23
A. R. Méndez and R. M. Velasco, An alternative model in traffic flow equations, Transp. Res. Part B, 42 (2008), 782-797, doi: https://doi.org/10.1016/j.trb.2008.01.003.

24
W. Marques Jr. and A. R. Méndez, On the kinetic theory of vehicular traffic flow: Chapman-Enskog expansion versus Grad’s moment method, Physica A, 392 No. 16 (2013), 3430-3440, doi: https://doi.org/10.1016/j.physa.2013.03.052.

25
C. F. Daganzo, A continuum theory of traffic dynamics for freeways with special lanes, Trasnp. Res. B, 31, No. 2 (1997), 83-102, doi: https://doi.org/10.1016/S0191-2615(96)00017-3.

26
M. J. Lighthill and G. B. Whitham, On kinematic waves. ii. a theory of traffic flow on long crowded roads, Proc. Roy. Soc. London, Series A, Math, Phys. Sci., 229 No. 1178 (1955), 317-345, doi: https://doi.org/10.1098/rspa.1955.0089.

27
S. P. Hoogendoorn and P. H. L. Bovy, Continuum modeling of multiclass traffic flow, Transp. Res. Part B, 34, No. 2 (2000), 123-146, doi: https://doi.org/10.1016/S0191-2615(99)00017-X.

28
S. P. Hoogendoorn and P. H. L. Bovy, Platton-based multiclass modeling of multilane traffic flow, Networks and Spatial Economics, 1, No.1-2 (2001), 137-166, doi: https://doi.org/10.1023/A:1011533228599.

29
S. Looghe and L. H. Immers, Multiclass kinematic wave theory of traffic flow, Transp. Res. Part B, 42, No. 6 (2008), 523-541, doi: https://doi.org/10.1016/j.trb.2007.11.001.

30
S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge Mathematical Library, United Kingdom (1970).

31
A. S. Fernandes and W. Marques Jr., Sound propagation in binary gas mixtures from a kinetic model of the boltzmann equation, Physica A, 332 (2004), 29-46, doi: https://doi.org/10.1016/j.physa.2003.10.028.

32
G. Medeiros-Kremer, An Introduction to the Boltzmann Equation and Transport Processes in Gases, Springer-Verlag Berlin Heidelberg (2010), doi: https://doi.org/10.1007/978-3-642-11696-4.

33
D. Helbing and M. Treiber, Numerical simulation of macroscopic traffic equations, Comput. Sci. Eng., 1, No. 5 (1999), 89-99, doi: https://doi.org/10.1109/5992.790593.

How to Cite?

DOI: 10.12732/ijpam.v112i3.7 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 112
Issue: 3
Pages: 531 - 556


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).