IJPAM: Volume 113, No. 1 (2017)
Title
REGIONAL ENLARGED CONTROLLABILITY FORPARABOLIC SEMILINEAR SYSTEMS
Authors
Touria Karite


Institute of Sciences
Moulay Ismail University
Meknes, MOROCCO
Abstract
The aim of this paper is to study the problem of the enlarged controllability for distributed parabolic semilinear systems evolving in spatial domain




We give some definitions and properties concerning this concept and then we use two approaches to calculate the control , the first one is based on the sub-differential method and the second one on the Lagrangian multiplier method. An algorithm is obtained and it's simulated numerically.
History
Received: November 30, 2016
Revised: January 17, 2017
Published: February 28, 2017
AMS Classification, Key Words
AMS Subject Classification: 93B05, 93C20
Key Words and Phrases: distributed systems, parabolic systems, regional controllability, Lagrangian approach, sub-differential method, semilinear systems, Uzawa algorithm
Download Section
Download paper from here.You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.
Bibliography
- 1
- J.P. Aubin, L'analyse Non Linéaire et ses Motivations Économiques, Dunod, 1984.
- 2
- W.M. Bian, Constrained controllability of some Non-linear systems, Applicable Analysis, 72, No. 1-2 (1999), 57-73, doi: https://doi.org/10.1080/00036819908840730.
- 3
- A. Boutoulout, A. Kamal and S.A.O. Beinane, Regional Controllability of Semi-Linear Distributed Parabolic Systems: Theory and Simulation, Intelligent Control and Automation, Vol, No. 3 (2012), 146-158, doi: https://doi.org/10.4236/ica.2012.32017.
- 4
- F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York (1991), doi: https://doi.org/10.1007/978-1-4612-3172-1.
- 5
- N. Carmichael and M.D. Quinn, Fixed-Point Methods in Nonlinear Control, Lecture notes in Control and Information Sciences, Springer-Verlag, Berlin Heidelberg (1984), doi: https://doi.org/10.1007/BFb0005643.
- 6
- R.F. Curtain and H. Zwart, An introduction to infinite dimensional linear systems theory, Springer-Verlag, New York (1995), doi: https://doi.org/10.1007/978-1-4612-4224-6.
- 7
- A. El Jai, A.J. Pritchard, M.C. Simon and E. Zerrik, Regional controllability of distributed parameter systems, International Journal of Control, 62, (1995), 1351-1365, doi: https://doi.org/10.1080/00207179508921603.
- 8
- A. El Jai and A.J. Pritchard, Sensors and actuators in distributed systems analysis, Wiley, New York (1988).
- 9
- K.J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York (1999), doi: https://doi.org/10.1007/b97696.
- 10
- C. Fabre, P.J. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation, Proc. Roy Soc. Edinburgh 125 A, (1995), 31-61, doi: https://doi.org/10.1017/S0308210500030742.
- 11
- M. Fortin, and R. Glowinski, Augmented Lagrangian Methods: Applications to the numerical solution of boundary-value problems, 15, North-Holland, Amsterdam (1983).
- 12
- D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, New York (1981), doi: https://doi.org/10.1007/BFb0089647.
- 13
- J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications 1, Dunod, Paris (1968).
- 14
- A. Matei, Weak solvability via Lagrange multipliers for two frictional contact models, Mathematics and Mechanics of Solids, 21, No. 7 (2014), 826–841, doi: https://doi.org/10.1177/1081286514541577.
- 15
- A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York (1983), doi: https://doi.org/10.1007/978-1-4612-5561-1.
- 16
- R. Tyrrell Rockafellar, Lagrange multipliers and optimality, SIAM Review, 35, No. 2 (1993), 183-238, doi: https://doi.org/10.1137/1035044.
- 17
- K. Yosida, Functional analysis, Springer-Verlag, Berlin Heidelberg New York (1980), doi: https://doi.org/10.1007/978-3-642-61859-8.
- 18
- E. Zeidler, Applied functional analysis : Applications to mathematical physics, Springer-Verlag, New York (1995), doi: https://doi.org/10.1007/978-1-4612-0815-0.
- 19
- E. Zerrik, A. El Jai and A. Boutoulout, Actuators and regional boundary controllability of parabolic system, Int. J. Syst. Sci., 31, No. 1 (2000), 73-82, doi: https://doi.org/10.1080/002077200291479.
- 20
- X. Zhang, Exact controllability of semilinear evolution systems and its application, Journal of Optimization Theory and Applications, 107, No. 2 (2000), 415-432, doi: https://doi.org/10.1023/A:1026460831701.
How to Cite?
DOI: 10.12732/ijpam.v113i1.11 How to cite this paper?Source: International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 113
Issue: 1
Pages: 113 - 129
Google Scholar; DOI (International DOI Foundation); WorldCAT.
This work is licensed under the Creative Commons Attribution International License (CC BY).