IJPAM: Volume 113, No. 1 (2017)

Title

ENTIRE DIRICHLET SERIES WITH MONOTONOUS
COEFFICIENTS AND LOGARITHMIC h-MEASURE

Authors

S.I. Panchuk$^1$, T.M. Salo$^2$, O.B. Skaskiv$^3$
$^{1,3}$Department of Mechanics and Mathematics
Ivan Franko National University of L'viv
L'viv, UKRAINE
$^2$Institute of Applied Mathematics and Fundamental Sciences
National University ``Lvivska Politekhnika''
UKRAINE

Abstract

Let $F$ be an entire function represented by absolutely convergent for all $z\in\mathbb{C}$ Dirichlet series of the form $ F(z) =
\sum\nolimits_{n=0}^{+\infty} a_{n}e^{z\lambda_{n}},$ where a sequence $(\lambda_n)$ such that $\lambda_n\in\mathbb{R}$ and $(\forall
n\geq 0):\ 0\leq\lambda_n<\beta:=\sup\{\lambda_j:\ j\geq0\}\leq
+\infty.$ In this paper we find the condition such that the relation $F(x+iy)=(1+o(1))a_{\nu(x, F)}e^{(x+iy)\lambda_{\nu(x, F)}}
$ holds as $x\to +\infty$ outside some set $E$ of finite logarithmic $h$-measure (i.e. $\text{\rm h-log-meas}(E):=\int_{E\cap[1, +\infty)}h(x) d\ln
x<+\infty$) uniformly in $y\in\mathbb{R}$, where $h$ is non-decrease positive continuous function on $[0,+\infty)$.

History

Received: December 13, 2016
Revised: January 29, 2017
Published: February 28, 2017

AMS Classification, Key Words

AMS Subject Classification: 30B20, 30D20
Key Words and Phrases: entire Dirichlet series, h-measure, exceptional set

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
O.B. Skaskiv, On the minimum of the absolutevalue of the sum for a Dirichlet series with bounded sequence ofexponents, Math. Notes 56 (5) (1994) 1177-1184, doi: https://doi.org/10.1007/BF02274666.

2
Ya. Stasyuk, On the Dirichlet series with monotonous coefficients and the finality of description of the exeptional set,Mat. Visn. Nauk. Tov. Im. Shevchenka, 5 (2008) 202-207. (inUkrainian) https://journals.iapmm. lviv.ua/ojs/index.php/MBSSS/article/view/105/99

3
O.B. Skaskiv, On Wiman's theorem concerning the minimum modulus of a function analytic in the unit disk,Math. USSR, Izv. 35 (1) (1990), 165-182, doi: https://doi.org/10.1070/IM1990v035n01ABEH000694.

4
O.B. Skaskiv, On certain relations between the maximum modulus and the maximal term of an entire dirichlet series, Math Notes, 66 (1999) 223-232, doi: https://doi.org/10.1007/BF02674881.

5
P.C. Fenton, The minimum modulus of gap power series, Proc. Edinburgh Math. Soc., 21 (1978) 49-54, doi: https://doi.org/10.1017/S001309150001587X.

6
O.B. Skaskiv, M.N. Sheremeta, On the asymptotic behavior of Dirichlet series, of the USSR-Sbornik, 59 (1988), 379-396, doi: https://doi.org/10.1070/SM1988v059n02ABEH003141.

7
M.R. Lutsyshyn, O.B. Skaskiv, Asymptotic properties of a multiple Dirichlet series, Mat. Stud., 3 (1994) 41-48. (in Ukrainian)https://matstud.org.ua/texts/1994/3/3 $\underline{\,}$041-048.pdf

8
T.M. Salo, O.B. Skaskiv, The minimum modulus of gap power series and h-measure of exceptional sets, arXiv: 1512.05557v2[math.CV] 21 Dec 2015, 13 p.

9
S.Mandelbrojt, Dirichlet series. Principles and methods, Dordrecht: Reidel (1972).

How to Cite?

DOI: 10.12732/ijpam.v113i1.13 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 113
Issue: 1
Pages: 141 - 149


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).