IJPAM: Volume 113, No. 1 (2017)

Title

SOME INTEGRAL TYPE WEAKLY COMPATIBLE
CONTRACTION IN MODULAR METRIC SPACES

Authors

Renu Chugh$^1$, Naresh Kumar$^2$
$^{1,2}$Department of Mathematics
M.D. University
Rohtak, 124001, Haryana, INDIA

Abstract

In this paper, we prove some fixed point theorems for integral type weakly compatible contraction in modular metric spaces which is more general than a metric. Our results generalize the results of Hossein Rahimpoor et.al., see [19].

History

Received: September 9, 2016
Revised: December 13, 2016
Published: February 28, 2017

AMS Classification, Key Words

AMS Subject Classification: 46A80, 47H10
Key Words and Phrases: modular metric space, weakly compitable maps, coincedence point

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
H. Nakano, Modular Semi-Ordered Spaces, Tokyo, 1950.

2
J. Musilak, W. Orlicz, On modular spaces, Studia Mathematica, 18 (1959), 49-65.

3
J. Musilak, Orlicz Spaces and Modular Spaces, Lecture notes in Maths, vol 1034, Springer, Berlin, 1983.

4
Jungck, Commuting mappings and fixed point, Am. Math. Mon. , 83 (1976), 261-263.

5
Sessa, On a weak commutativity conditions of mappings in fixed point consideration, Publ. Inst. Math. Belgr. , 32 (1982), 146-153.

6
G. Jungck, Compatible mappings and common fixedpoints, Int. J. Math. Sci. , 11 (1986), 771-779.

7
G. Jungck, Common fixed points for non continuous nonself maps on non-metric space, Far East J. Math. Sci. , 4 (1996), 19-215.

8
G. Jungck, B. E. Rhoades, Fixed point for set valued functions without continuity, Indian J. Pure App. Math. , 29, No. 3 (1998), 227-238.

9
Branciari, A fixed point theorem for mapping satisfy a general contractive condition of integral type, Int. J. Math. Sci. , 29 (2002), 531-536.

10
Vijayaraju, P. Rhoades, B. E. Mohanra, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Sci. , 15 (2005), 2359-2364.

11
Razani, A, Moradi, Common fixed point theorems of integral type in integral type in modular spaces, Bull. Iran. Math. Soc. , 35 (2009), 11-24.

12
V. Chistyakov, Modular metric spaces, 1: Basic conspect, Nonlinear Analysis, 72 (2010), 1-14, doi: https://doi.org/10. 1016/j. na. 2009. 04. 057.

13
P. Chaipunya, C. Mongkolkeha, W. Sintunavarat, P. Kuman, Fixed point theorems for multivalued mappings in modular metric space, Abstract and Applied Analysis, 20012, Article ID 503504, 14 pages, doi: https://doi.org/10. 1155/2012/503504.

14
V. Chistykov, A fixed point theorem for contractions in modular metric spaces, Preprint submited to Arxiv (2011).

15
Y. Cho, R. Saadati, G. Sadeghi, Quasi-contraction mappingsin modular metric spaces, Journal of Applied Mathematics (2012), Article I. D. 907951, 5 pages, doi: https://doi.org/10. 1155/2012/907951.

16
C. Mongkolkeha, W. Sintanavarat, P. Kumam, Fixed point theorems for contraction mappings in modular spaces, Fixed Point Theory and Application, 93 (2011), doi: https://doi.org/10. 1186/1687-1812-2011-93.

17
H. Rahimpoor, A. Ebardian, M. Eshaghi Gordji, A. Johri, Fixed point theory for generalized quasi -contraction maps in modular metric spaces, Journal of Mathematics and Computer Science, 10 (2014), 54-60.

18
H. Rahimpoor, A. Ebardian, M. Eshaghi gordji, A. Zohri, Some fixed point theorems on modular metric spaces, Acta Universitatis Apulensis, 37 (2014), 161-170.

19
Hossein Rahimpoor, Ali Ebadian, Madjid Eshaghi Gordji, Ali Zohri, common fixed point theorems in modular metric spaces, International Journal of Pure and Applied Mathematics, 99, No. 3 (2015), 373-383.

20
Bahareh Azadifar, Ghadir Sadeghi, Reza Saadati, and Choonkil Park, Integral type contraction in modular metric spaces, Journal of Inequalities and App. , 483 (2013), 2-14.

How to Cite?

DOI: 10.12732/ijpam.v113i1.3 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 113
Issue: 1
Pages: 23 - 34


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).