IJPAM: Volume 113, No. 1 (2017)

Title

ASYMPTOTICALLY $\omega$-PERIODIC SOLUTION FOR
AN EVOLUTION DIFFERENTIAL EQUATION
VIA $\omega$-PERIODIC LIMIT FUNCTIONS

Authors

William Dimbour$^1$, Solym Mawaki$^2$
$^1$UMR Espace-Dev
Université de Guyane
Campus de Troubiran 97300
Cayenne Guyane (FWI), FRENCH GUIANA
$^2$Centre Universitaire de Mayotte
Département Sciences et Technologies
Route Nationale 3, BP 53 - 97660, DEMBENI

Abstract

In this paper, we give sufficient conditions for the existence and uniqueness of asymptotically $\omega$-periodic solutions for an evolution differential equation considering the class of $\omega$-periodic limit functions. This is done using the Banach Fixed Point Theorem.

History

Received: October 14, 2016
Revised: January 17, 2017
Published: February 28, 2017

AMS Classification, Key Words

AMS Subject Classification: 34K05, 34A12, 34A40
Key Words and Phrases: asymptotically $\omega$-periodic functions, evolutionnary process, oridnary differential equation

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
C. Cuevas and J.C. de Souza. $S$ asymptotically $\omega$-periodic solutions of semilinear fractional integro-differential equations.
Appl. Math. Lett, 22, 2009, 865-870, DOI: 10.1016/j.aml.2008.07.013.

2
C. Cuevas and C. Lizanna. $S$ asymptotically $\omega$-periodic solutions of semilinear Volterra equations.
Math. Meth. Appl. Sci, 33, 2010, 1628-1636, DOI: 10.1002/mma.1284.

3
C. Cuevas and C. Lizanna. Existence of $S$ asymptotically $\omega$-periodic solutions for two-times fractional order differential equations.
Southeast.Asian Bull.Math. 37, 2013, 683-690, DOI: 10.1016/j.na.2009.09.00.

4
W. Dimbour J-C. Mado. $S$ asymptotically $\omega$-periodic solution for a nonlinear differential equation with piecewise constant argument in a Banach space.
CUBO A Mathematical Journal 16(13), 2014, 55-65,DOI: 10.4067/S0719-06462014000300005.

5
W. Dimbour, G.Mophou and G.M. N'Guérékata. $S$ asymptotically $\omega$-periodic solution for partial differential equations with finite delay.
Electron.J.Differ.Equa. 117, 2011, 1-12.

6
H. R. Henríquez Asymptotically periodic solutions of abstract differential equations.
Nonlinear Analysis, 80 (2013), DOI: 10.1016/j.na.2012.10.010.

7
H. R. Henríquez, M. Pierri and P. Táboas. On $S$ asymptotically $\omega$-periodic function on Banach spaces and applications.
J. Math. Anal Appl. 343, 2008, 1119-1130, DOI: 10.1016/j.jmaa.2008.02.023.

How to Cite?

DOI: 10.12732/ijpam.v113i1.7 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 113
Issue: 1
Pages: 59 - 71


$\omega$-PERIODIC SOLUTION FOR AN EVOLUTION DIFFERENTIAL EQUATION VIA $\omega$-PERIODIC LIMIT FUNCTIONS%22&as_occt=any&as_epq=&as_oq=&as_eq=&as_publication=&as_ylo=&as_yhi=&as_sdtAAP=1&as_sdtp=1" title="Click to search Google Scholar for this entry" rel="nofollow">Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).