IJPAM: Volume 113, No. 2 (2017)

Title

FIXED POINT THEOREMS IN $GP$-METRIC
SPACE USING $\alpha$-CONTRACTION

Authors

Savita Rathee$^1$, Kusum Dhingra$^2$
$^{1,2}$Department of Mathematics
Maharshi Dayanand University
Rohtak, Haryana, 124001, INDIA

Abstract

In this paper, we consider $\alpha$-contraction in the context of generalized partial metric space ($GP$-metric space) and give conditions to prove the existence and uniqueness of fixed point for such type of contraction mappings. We provide examples to support our results. In particular, we extend and generalize the results of Bilgili et.al., see [3].

History

Received: August 5, 2016
Revised: December 14, 2016
Published: March 19, 2017

AMS Classification, Key Words

AMS Subject Classification: 46T99, 47H10, 54H25
Key Words and Phrases: fixed point, $GP$-metric space, orbital admissible mapping

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
M. Asadi, E. Karapinar and A. Kumar, $\alpha-\psi$ Geraghty contraction on generalized metric spaces, Journal of Inequalities and Applications, 423 (2014), 1-21.

2
S. Banach, Sur les operations dans les ensembles abstraits et leurs applications aux equations integrales, Fundam. Math., 3 (1922), 133-181.

3
N. Bilgili, E. Karapinar, P. Salimi, Fixed point theorems for generalized contractions on $GP$-metric spaces, Journal of Inequalities and Applictions, 39 (2013), 1-13.

4
B.C. Dhage, A Study of Some Fixed Point Theorems, Ph.D. Thesis, Marathwada Univ.Aurangabad, India (1984).

5
B.C. Dhage, Generalized metric space and mappings with fixed point, Bull. Cal. Math. Society, 84 (1992), 329-336.

6
S. Gahler, $2$-metriche raume und ihre topologische struktur, Math. Nachr., 26 (1963), 115-148.

7
Z. Mustafa, B. Sims, A new approach to generalized metric spaces, Journal of Nonlinear Convex Analysis, 7 (2006), 289-297

8
Z. Mustafa, B. Sims, Some remarks concerning $D$-metric space, Proceedings of International Conference on Fixed Point Theory and Applications, Yokohama,Japan,(2004), 189-198.

9
Z. Mustafa, H. Obiedat, and F. Awawdeh, Some fixed point theorem for mapping on complete $G$-metric spaces, Fixed Point Theory and Applications, 2008 (2008), 1-12.

10
O. Popescu, Some new fixed point theorems for $\alpha$-Geraghty contraction type maps in metric spaces, Fixed Point Theory and Applications, 190 (2014), 1-12.

11
M.R.A. Zand, A.D. Nezhad, A generalization of partial metric spaces, J. Contemp.Appl. Math., 24 (2011), 86-93.

How to Cite?

DOI: 10.12732/ijpam.v113i2.1 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 113
Issue: 2
Pages: 189 - 201


$GP$-METRIC SPACE USING $\alpha$-CONTRACTION%22&as_occt=any&as_epq=&as_oq=&as_eq=&as_publication=&as_ylo=&as_yhi=&as_sdtAAP=1&as_sdtp=1" title="Click to search Google Scholar for this entry" rel="nofollow">Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).