IJPAM: Volume 113, No. 2 (2017)

Title

STRUCTURES OF GENERALIZED FUZZY SETS
IN NON-ASSOCIATIVE RINGS

Authors

Inayatur Rehman$^1$, Muhammad Gulistan$^2$,
Muhammad Asif Gondal$^3$, Shah Nawaz$^4$
$^{1,3}$Department of Mathematics and Sciences
College of Arts and Applied Sciences
Dhofar University
Salalah, OMAN
$^{2,4}$Department of Mathematics
Hazara University
Mansehra, PAKISTAN

Abstract

Since the introduction of the concept of fuzzy sets, the theoretical application of fuzzy sets has been restricted to associative algebraic structures (groups, semigroups, associative rings, semi-rings etc). In addition, the study of fuzzy sets, where the base set is a commutative structure, has attracted the attention of many researchers. On the other hand there are many sets which are naturally endowed with two compatible binary operations forming a non-associative ring and we may dig out examples which investigate a non-associative structure in the context of fuzzy sets. Intuitively one can apply the concept of fuzzy sets to non-commutative and non-associative structures.In this paper, we introduce the concept of ($\alpha,\beta$)-fuzzy ideals in LA-rings (a non-associative structure). We discuss the important features of a non-associative regular LA-ring by using ($\alpha,\beta$) -fuzzy bi-ideals, ($\alpha,\beta$)-fuzzy generalized bi-ideals, ($\alpha,\beta$)-fuzzy quasi-ideals, and ($\alpha,\beta$)-fuzzy interior ideals. Ultimately, we identify upper and lower parts of these structures and characterize regular LA-rings using the identified properties of these structures.

History

Received: November 13, 2016
Revised: January 20, 2017
Published: March 19, 2017

AMS Classification, Key Words

AMS Subject Classification: 17D99
Key Words and Phrases: LA-rings, Fuzzy LA-rings, $\left( \alpha,\beta\right) $-fuzzy ideals, Regular LA-Rings

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
Atanassov. K., Intuitionistic fuzzy sets, Fuzzy Sets and Systems.,20 (1986), 87-96.

2
Bhakat. S. K. and Das. P., On the definition of fuzzy subgroups, Fuzzy Sets and Systems., 51 (1992), 235-241.

3
Davvaz. B., $(\in,\in\vee q)$-fuzzy sub-nearrings andideals, Soft Computing., 10 (2006), 206-211.

4
Dib. K. A., Galhum N. and Hassan, A., Fuzzy rings and fuzzyideals, Fuzzy Mathematics., 4 (1996), 245-261.

5
Dib. K. A. and Youssef, N. L.. Fuzzy Cartesian product, fuzzyrelations and fuzzy functions, Fuzzy Sets Systems., 41 (1991), 299-315.

6
Gulistan. M., Shahzad. M. and Yaqoo. N., On $(\in,\in\veeq_{k})$-fuzzy KU-ideals of KU-algebras, Acta Universitatis Apulensis.,39 (2014), 75-83.

7
Gulistan. M., Yaqoob. N. and Shahzad. M., A note on Hv-LA-semigroups, U.P.B Scientific Bulletin, Series A., 77 (2015), 93-106.

8
Gulistan, M., Shahzad M. and Ahmed, S. 2014. On $(\alpha,\beta)$-fuzzy KU-ideals of KU-algebras, Afrika Matematika. DOI10.1007/s13370-014-0234-2.

9
Gulistan. M., Aslam and Abdullah. S., Generalized anti fuzzyinterior ideals in LA-semigroups, Applied Mathematics & Information SciencesLetters., 3 (2014), 1-6.

10
Jun. Y. B., Generalizations of $\left( \in,\in\vee q\right)$-fuzzy subalgebras in BCK/BCI-algebra, Computers & Mathematics withApplications., 58 (2009), 1383-1390.

11
Jun. Y. B. and Song. S. Z., Generalized fuzzy interior ideals insemigroups, Information Sciences., 176 (2006), 3079-3093.

12
Kazanci. O. and Yamak. S., Generalized fuzzy bi-ideals ofsemigroup, Soft Computing., 12 (2008), 1119-1124.

13
Kuroki. N., On fuzzy ideals and fuzzy bi-ideals in semigroups,Fuzzy Sets and Systems., 5 (1981), 203-215.

14
Murali. V., Fuzzy points of equivalent fuzzy subsets, InformationSciences., 158 (2004), 277-288.

15
Rehman. I., Shah. M., Shah. T. and Razzaque. A., On existence ofnon-associative LA-rings, Analele Stiintifice ale Universitatii ovidiusConstanta., 3 (2013), 223-228.

16
Shabir. M., Jun. Y. B. and Nawaz. Y., Semigroups characterized by $(\in,\in\veeq_{k})$-fuzzy ideals, Computers & Mathematics withApplications., 60 (2010), 1473-1493.

17
Shah. T., Kausar. N. and Rehman. I., Intuitionistics fuzzy normalsubring over a non-associative ring, Analele Stiintifice ale Universitatiiovidius Constanta., 20(2012), 369-386.

18
Shah. T. and Razzaque. A., Soft M-systems in a class ofnon-associative rings, U.P.B. Scientific Bulletin Series A., 77 (2015), 131-142.

19
Shah. T., Razzaque. A. and Rehman. I., Application of Soft sets toNon-associative rings, Journal of Intelligent and Fuzzy Systems., 30 (2016), 1537-1546.

20
Shah. T. and Rehman. I., On LA-rings of finitely non-zerofunctions, International Journal of Contemporary Mathematical Sciences., 5 (2010), 209-222.

21
Shah. T. and Rehman. I., On characterizations of LA-rings throughsome properties of their ideals, Southeast Asian Bulletin of Mathematics., 36 (2012), 695-705.

22
Volf. A. C., Fuzzy subfields, Analele Stiintifice aleUniversitatii ovidius Constanta., 2 (2001), 193-198.

23
Yin. Y. G., and Zhan. J., Characterization of ordered semigroupsin terms of fuzzy soft ideals, Bulletin of Malaysian Mathematical SciencesSociety., 35 (2012), 997-1015.

24
Zadeh. L. A., Fuzzy Sets, Information and Control., 8 (1965), 338-353.

How to Cite?

DOI: 10.12732/ijpam.v113i2.10 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 113
Issue: 2
Pages: 299 - 325


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).