IJPAM: Volume 113, No. 2 (2017)

Title

ON THE HOPFICITY OF COMPLETELY DECOMPOSABLE
TORSION-FREE ABELIAN GROUPS

Authors

Evgeniy V. Kaygorodov$^1$, Marina V. Chanchieva$^2$
$^{1,2}$Faculty of Physics and Mathematics
Department of Mathematics and Informatics
Gorno-Altaisk State University
649000, GASU, Lenkin Str. 1, Gorno-Altaisk, Altai Republic, RUSSIA

Abstract

The property of Hopficity is studied in a well-known class of Abelian groups - completely decomposable torsion-free groups. Examples of non-Hopfian completely decomposable torsion-free group are constructed.

History

Received: December 4, 2016
Revised: March 1, 2017
Published: March 19, 2017

AMS Classification, Key Words

AMS Subject Classification: 16Txx, 20Kxx
Key Words and Phrases: Hopficity, Abelian group, completely decomposable groups, homogeneous group, torsion-free group

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
A.I. Malcev, On isomorphic matrix representations of infinite groups, Recreational Mathematics, 8 (1940), 405-422.

2
B.H. Neumann, A two-generator group isomorphic to a proper factor group, Journal of the London Mathematical Society, 25 (1950), 247-248.

3
G. Higman, A finitely related group with an isomorphic proper factor group, Journal of the London Mathematical Society, 26 (1951), 59-61.

4
G. Baumslag, D. Solitar, Some two-generator one-relator non-Hopfian groups, Bulletin of the American Mathematical Society, 68 (1962), 199-201.

5
D. Meier, Non-Hopfian groups, Journal of the London Mathematical Society, 26 (1982), 265-270.

6
Y. de Cornulier, Finitely presentable, non-Hopfian groups with Kazhdan's Property (T) and infinite outer automorphism group, Proceedings of the American Mathematical Society, 135 (2007), 951-959.

7
V.H. Mikaelian, On finitely generated soluble non-Hopfian groups, Journal of Mathematical Sciences, 166 (2010), 743-755.

8
R. Hirshon, Some theorems on Hopficity, Transactions of the American Mathematical Society, 141 (1969), 229-244.

9
R. Hirshon, On Hopfian groups, Pacific Journal of Mathematics, 32 (1970),753-766.

10
R. Hirshon, A conjecture on Hopficity and related results, Archiv der Mathematik (Basel), 22 (1971), 449-455.

11
R. Hirshon, The center and the commutator subgroup in Hopfian groups, Arkiv för Matematik, 9 (1971), 181-192.

12
R. Hirshon, The direct product of Hopfian group with a group with cyclic center, Arkiv för Matematik, 10 (1972), 231-234.

13
R. Hirshon, The direct product of a Hopfian group with p-group, Archiv der Mathematik (Basel), 26 (1975), 470-479.

14
R. Hirshon, Some properties of endomorphisms in residually finite groups, Journal of the Australian Mathematical Society. Series A, 24 (1977), 117-120.

15
R. Hirshon, Misbehaved direct products, Expositiones Mathematicae, 20 (2002), 365-374.

16
G. Baumslag, Hopficity and Abelian groups, Topics in Abelian groups, Proceedings of the New Mexico Symposium on Abelian Groups, Scott-Foresman-Chicago, New Mexico State University (1962), 331-335.

17
G. Baumslag, On Abelian Hopfian groups. I, Mathematische Zeitschrift, 78 (1962), 53-54.

18
G. Baumslag, Products of Abelian Hopfian groups, Journal of the Australian Mathematical Society, 8 (1968), 322-326.

19
A.L.S. Corner, Three examples on Hopficity in torsion-free Abelian groups, Acta Mathematica Academiae Scientiarum Hungaricae, 16 (1965), 303-310.

20
J.M. Irwin, J. Takashi, A quasi-decomposable Abelian group without proper isomorphic quotient groups and proper isomorphic subgroups, Pacific Journal of Mathematics, 29 (1969), 151-160.

21
B. Goldsmith, K. Gong, On super and hereditarily Hopfian and co-Hopfian Abelian groups, Archiv der Mathematik, 99 (2012), 1-8.

22
B. Goldsmith, K. Gong, On adjoint entropy of Abelian groups, Communications in Algebra, 40 (2012), 972-987.

23
B. Goldsmith, K. Gong, A note on Hopfian and co-Hopfian Abelian groups, AMS Forthcoming, Dublin (2012), 1-9.

24
B. Goldsmith, K. Gong, On some generalizations of Hopfian and co-Hopfian Abelian groups, Acta Mathematica Hungarica, 139 (2013), 393-398.

25
G. Braun, L. Strüngmann, The independence of the notions of Hopfian and co-Hopfian Abelian p-groups, Proceedings of the American Mathematical Society, 143 (2015), 3331-3341.

26
E.V. Kaigorodov, Hopfian algebraically compact Abelian groups, Algebra and Logic, 52 (2014), 442-447.

27
L. Fuchs, Infinite Abelian Groups, Vol. I, Academic Press, New York (1970).

28
L. Fuchs, Infinite Abelian Groups, Vol. II, Academic Press, New York (1973).

29
P.A. Krylov, A.V. Mikhalev, A.A. Tuganbaev, Endomorphism Rings of Abelian Groups, Kluwer Academic Publishers, Dordrecht, Boston, London (2003).

30
A.G. Kurosh, Lectures on General Algebra, Chelsea Publishing Co., New York (1963).

31
D.M. Arnold, Finite rank torsion free Abelian groups and rings, Lecture Notes in Mathematics, Vol. 931, Springer-Verlag, Berlin, Heidelberg, New York (1982).

How to Cite?

DOI: 10.12732/ijpam.v113i2.11 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 113
Issue: 2
Pages: 327 - 334


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).