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Abstract: We introduce the concept of centroid and quasicentroids for Leibniz algebras and

study some of their properties. Then we determine the centroids of low-dimensional Leibniz

algebras and give their classification.
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1. Introduction

Our main focus in the paper will be on centroids of Leibniz algebras. It is well-
known that for a Lie algebra L, the centroid Γ(L) is just the space of L-module
homomorphisms ϕ on L such that ϕ([x, y]) = [x, ϕ(y)] for all x, y ∈ L, (viewing
L as an L-module under the adjoint action). Our interest in the centroid stems
from the study of algebraic and geometric classification problems of the Leibniz
algebras. In 1993, Loday introduced the notion of Leibniz algebra [4] which
is generalization of Lie algebra, where the skew-symmetricity of the brackets
is dropped and the Jacobi identity is replaced by the Leibniz identity. There,
Loday also has show that the classical relationship between Lie algebras and
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associative algebras can be extended to the analogous relationship between
Leibniz algebras and the diassociative algebras (see [5]). Since the introduction
of Leibniz algebras, several results in the theory of Lie algebras have been
extended to Leibniz algebras and this motivate us to study centroids of Leibniz
algebras.

The centroid of algebras plays an important role in understanding the struc-
ture of algebras. All scalar extensions of a simple algebra remain simple if and
only if its centroid just consists of the scalars in the base field. In particular, for
finite-dimensional simple associative algebras, the centroid is critical in inves-
tigating Brauer groups and division algebras. Another area where the centroid
occurs naturally is in the study of derivations of an algebra. If ϕ is an element
of the centroid and d is a derivation of A, then ϕ ◦ d is also a derivation of A,
so centroidal transformations can be used to construct derivations of algebras.
The centroids of Lie algebras have been studied in [6]. It is well known that the
centroid of a Lie algebra is a field, This plays an important role in the classifi-
cation problem of finite dimensional extended affine Lie algebras over arbitrary
field of characteristic zero (see [2]). Melville and Benkarta studied the centroids
of nilpotent, extended affine and root graded Lie algebras, for more details see
[2], [6], [7], and references therein. Our questions here is, can similar results be
obtained for centroids of Leibniz algebras?

This paper deals with the problem of description of centroids of the Leibniz
algebras. The concept of centroids in this case is easily imitated from that
of finite-dimensional algebras. The algebra of centroids plays important role
in the classification problems and in different applications of algebras. In the
study we make use classification results of two, three, four-dimensional complex
Leibniz algebras from [4], [3], [1].

2. Preliminaries

This section contains main definitions used and some results obtained for Leib-
niz algebras.

Definition 1. A Leibniz algebra L is a vector space over a field K equipped
with a bilinear map

[·, ·] : L× L→ L

satisfying the Leibniz identity
[

x, [y, z]
]

=
[

[x, y], z
]

−
[

[x, z], y
]

for all x, y, z ∈ L. (1)
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Example 2. Let L be a Lie algebra and let M be a L-module with an
action M × L → M , (m,x) 7→ mx. Let ψ : M → L be a L-equivariant linear
map, this is ψ(mx) = [ψ(m), x], for all m ∈ M and x ∈ L, then one can define
a Leibniz structure on M as follows:

[m,n]
′

:= mψ(n), for all m,n ∈M.

Definition 3. Let L and L1 be two algebras over a field K. A linear
mapping ψ : L −→ L1 is a homomorphism if

ψ([x, y]L) = [ψ(x), ψ(y)]L1 , for all x, y ∈ L (2)

For a Leibniz algebra L we define

L = L1, Lk+1 = [Lk, L], k > 1 .

Clearly,

L1 ⊇ L2 ⊇ · · · .

Definition 4. A Leibniz algebra L is called nilpotent if there is a positive
integer s ∈ N such that L = L1 ⊃ L2 ⊃ L3 ⊃ · · · ⊃ Ls = {0} . The smallest
integer s such that Ls = {0} is called the nil-index of L.

For a subset B of L the subset

ZL(B) = {x ∈ L|[x,B] = [B,x] = 0}

is said to be the centralizer of B in L. Obviously, ZL(L) is the center of L.

Definition 5. A linear transformation d of a Leibniz algebra L is called a
derivation if for any x, y ∈ L

d([x, y]) = [d(x), y] + [x, d(y)]

holds.

The set of all derivations of Leibniz algebra L is a subspace of EndK(L). This
subspace equipped with the bracket [d1, d2] = d1 ◦ d2 − d2 ◦ d1 is a Lie algebra
denoted by Der(L).

Definition 6. A derivation d ∈ End(L) is said to be a qauasi-derivation,
if there exist d

′

∈End(L) such that

[d(x), y] + [x, d(y)] = d
′

[x, y].
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Definition 7. Let L be a Leibniz algebra over a field K. The set

ΓK(L) =
{

ϕ ∈ EndK(L)| ϕ[a, b] = [a, ϕ(b)] = [ϕ(a), b] for all a, b ∈ L
}

is called the centroids of L.

Also we can define the set

QΓK(L) =
{

ϕ ∈ EndK(L)| [a, ϕ(b)] = [ϕ(a), b] for all a, b ∈ L
}

,

which is called the quasi-centroid of Leibniz algebra L.

Definition 8. Let L be Leibniz algebra and ϕ ∈ End(L). Then ϕ is called
a central derivation, if ϕ(L) ⊆ Z(L) and ϕ(L1) = 0.

The set of all central derivations of L is denoted by C(L). It is a simple obser-
vation to see that C(L) ⊆ Γ(L). In fact, C(L) is an ideal of Γ(L).
On the other hand, Γ(L) is closed under composition and thus has Leibniz alge-
bra structure. Hence, defining the bracket operation [ϕ1, ϕ2] = ϕ1 ◦ϕ2−ϕ2 ◦ϕ1

for ϕ1, ϕ2 ∈ Γ(L) as usual, we can consider Γ(L) as a Lie subalgebra of End(L).

Definition 9. Let L be Leibniz algebra. We say that L is indecomposable
if it can not be written as a direct sum of its ideals. Otherwise the L is called
decomposable.

Definition 10. Let L be Leibniz algebra. We say that L is indecomposable
if it can not be written as a direct sum of its ideals. Otherwise the L is called
decomposable.

Definition 11. Let L be an indecomposable Leibniz algebra. We say
Γ(L) is small if Γ(L) is generated by central derivations and the scalars. The
centroid of a decomposable Leibniz algebra is called small if the centroids of
each indecomposable factors are small.

Example 12. Let L be a three-dimensional Leibniz algebra over complex

field and
{

e1, e2, e3

}

be its basis of L given by [e2, e2] = e1, [e3, e3] = e2.

Let ϕ(e1) = ae1, ϕ(e2) = be1 + ae2, and ϕ(e3) = ce1 + ae3 for a, b, c ∈ C.Then
ϕ ∈ Γ(L).

Next we develop some general result on centroids of Leibniz algebras.
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3. Results

3.1. Properties of Centroids of Leibniz Algebras

In this section we declare the following results on properties of the centroids of
Leibniz algebras.

Proposition 13. Let L be Leibniz algebra. Then

i) Γ(L)(Der(L)) ⊆ Der(L).

ii) [Γ(L),Der(L)] ⊆ Γ(L).

iii) [Γ(L),Γ(L)](L) ⊆ C(L) and [Γ(L),Γ(L)](L1) = 0.

iv) Γ(L) ⊂ QDer(L).

v) If L1
∼= L2 then Γ(L1) ∼= Γ(L2)

Proof. The proof of parts i) – iv) is straightforward by using definitions
of derivation and centroid. As for part e) the mapping ρ : Γ(L1) −→ Γ(L2)
defined by ρ(ϕ) = f ◦ϕ◦f−1, for an isomorphism f : L1 −→ L2 and ϕ ∈ Γ(L1),
gives the required isomorphism Γ(L1) ∼= Γ(L2).

Theorem 14. Let L be Leibniz algebra. Then for any ϕ ∈ Γ(L) and
d ∈ Der(L) one has the following.

a) C(L) = Γ(L) ∩Der(L);

b) d ◦ ϕ is contained in Γ(L) if and only if ϕ ◦ d is a central derivation of L;

c) d ◦ ϕ is a derivation of L if and only if [d, ϕ] is a central derivation of L.

Proof. Let us prove a) If ϕ ∈ Γ(L) ∩ Der(L) then by definition of Γ(L)
and Der(L), for all x, y ∈ L, We have ϕ[x, y] = [ϕ(x), y] + [x, ϕ(y)] and
ϕ[x, y] = [ϕ(x), y] = [x, ϕ(y)], so ϕ(L1) = 0 and ϕ(L) ⊆ Z(L). It follows
easily that Γ(l) ∩Der(L) ⊆ C(L).
To show the inverse inclusion, let ϕ ∈ C(L); then 0 = ϕ[x, y] = [ϕ(x), y] =
[x, ϕ(y)]. Thus ϕ ∈ Γ(L) ∩Der(L). This implies C(L) = Γ(L) ∩Der(L)

Let us prove b). For any ϕ ∈ Γ(L), d ∈ Der(L), ∀x, y ∈ L by saying d ◦ϕ is
contained in Γ(L) is central derivation of L by a and b in Proposition (13) we
have

(ϕ ◦ d)[x, y] = [ϕ ◦ d(x), y] + [x, ϕ ◦ d(y)]
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and

(ϕ, d)[x, y] = [(ϕ, d)(x), y] = [x, (ϕ, d)(y)]

(ϕ ◦ d)[x, y]− (d ◦ ϕ)[x, y] = [(ϕ ◦ d)(x), y] − [(d ◦ ϕ)(x), y]

= [x, (ϕ ◦ d)(y)] − [x, (d ◦ ϕ)(y)].

Then it holds (ϕ ◦ d)[x, y] = [(ϕ ◦ d)(x), y] and [x, (ϕ ◦ d)(y)] = 0. Similarly,
[(ϕ ◦ d)(x), y] = 0.
Finally, (ϕ ◦ d)[x, y] = 0 and thus φ ◦ d is an central derivation of A.
(2) If d ◦ ϕ ∈ Der(L): using [d, φ] ∈ Γ(L) we get

(d, ϕ)[x, y] = [(d, ϕ)(x), y] = [x, (d, ϕ)(y)]. (3)

On the other hand [d, ϕ] = d ◦ ϕ− ϕ ◦ d and ϕ ◦ d, d ◦ ϕ ∈ Der(A). Therefore,

(d, ϕ)[x, y] = [(d ◦ϕ)(x), y] + [x, (d ◦ϕ)(y)]− [(ϕ ◦ d)(x), y]− [x, (ϕ ◦ d)(y)] (4)

by equations (3) and (4), we get x
(

[d, ϕ](y)
)

=
(

[d, ϕ](x)
)

y = 0, and thus the

necessity is gotten.
The sufficiency can be proved by d◦ϕ = [d, ϕ]−ϕ◦d and Proposition 14 (i).

If B is a Γ(L)-invariant ideal of L. Let V (B) =
{

ϕ ∈ Γ(L)|ϕ(B) = 0
}

be its

vanishing ideal.
Let Hom(L/B,ZL(B)) be the a vector space of all linear map from L/B to
ZL(B) over a field K. Define

T (B) =
{

f ∈ Hom(L/B,ZL(B))|f [x, y] = f [x̄, ȳ] = [f(x̄), ȳ] = [x̄, f(ȳ)]
}

Where x̄ and ȳ ∈ L/B. Then T (B) is a subspace of Hom(L/B,ZL(B))

Theorem 15. Let L be a Leibniz algebra and B be Γ(L)− invariant ideal
of L. Then

i. V (B) is an isomorphic to T (B) as vector space.

ii. If Γ(B) = KidB then Γ(L) = KidB ⊕ V (B) as vector space.

Proof. i. Consider the map α : V (B) → T (B), given by αϕ(ȳ) = ϕ(y),
where ϕ ∈ V (B) and ȳ = y + B ∈ L/B. The map α is well defined. For
if ȳ = ȳ1, then y − y1 ∈ B and so ϕ(y − y1) = 0. i.e ϕ(y) = ϕ(y1). Hence
α(ϕ)(ȳ) = α(ϕ)(y1) Its follows easily that α is an injective. if αϕ(ȳ) = αϕ1(ȳ)
for ϕ,ϕ1 ∈ Γ(L) and for any y ∈ L, Viz. ϕ(y) = ϕ1(y), then ϕ = ϕ1 We
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now show that α is onto. For ϕf : L → L, ϕf (x) = f(x̄) for x ∈ L it follows

from the definition of ϕf [x, y] = f [x, y] = f [x̄, ȳ] = [f(x̄), f(ȳ)] = [x̄, f(ȳ)] for
all x, y ∈ L namely, ϕf [x, y] = [ϕf (x), y] = [x, ϕf (y)]. Thus ϕf ∈ Γ(L) and
ϕf ∈ V (B) since (ϕf )(B) = 0. But α(ϕf ) = f implies that α is onto. Its fairly
easy to see that α preserve operation on vector space is linear. Thus α is an
isomorphism of vector spaces. We now prove ii. If Γ(L) = KidB , then for all
ϕ ∈ Γ(L), ϕ|B = λidB , for some λ ∈ K. If ϕ 6= λidL, let ψ(x) = λx, for all
x ∈ L, then ψ ∈ Γ(L), ψ − ϕ ∈ V (B). Clearly, ϕ = ψ + (ϕ − ψ). Furthermore,
KidL ∩ V (B) = 0 so ϕ(L) = KidL ⊕ V (B).

3.2. Centroids of Low Dimensional Leibniz Algebras

Let {e1, e2, e3, · · · , en} be a basis of an n-dimensional Leibniz algebra L. Then

[ei, ej ] =
n
∑

k=1

γkijek , i, j = 1, 2, · · · , n.

L on the basis {e1, e2, e3, · · · , en}.
An element ϕ of the centroid Γ(L) being a linear transformation of the

vector space L is represented in a matrix form [aij ]i,j=1,2,··· ,n, i.e. ϕ(ei) =
∑n

j=1 ajiej , i = 1, 2, · · · , n. According to the definition of the centroid the en-
tries aij i, j = 1, 2, · · · , n of the matrix [aij]i,j=1,2,··· ,n must satisfy the following
systems of equations:

n
∑

t=1

(γtijakt − atiγ
k
tj) = 0; and

n
∑

t=1

(γkijakt − atjγ
k
it) = 0;

to solve the system of equations above with respect to aij i, j = 1, 2, · · · , n
which can be done by using a computer software. algebras [3].

Theorem 16. [4] Any two-dimensional Leibniz algebra L isomorphic to
one of following non-isomorphic Leibniz algebras

L1 : [e1, e1] = e2
L2 : [e1, e2] = −[e2, e1] = e2
L3 : [e1, e2] = [e2, e2] = e1

Theorem 17. The centroid of two dimensional complex Leibniz algebras
are given as follows:

Theorem 18. [3] Up to isomorphism , there exist three one parametic
families and six explicit representatives of non Lie complex Leibniz algebras of
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Table 1: Centroids of two-dimensional Leibniz algebras

Leibniz algebra Centroid Types of

L Γ(L) Γ(L)

L1

(

a11 0
a21 a11

)

not small

L2

(

a11 0
0 a11

)

small

L3,

(

a11 0
0 a11

)

small

dimension three:

RR1 : [e1, e3] = −2e1, [e2, e2] = e1, [e3, e2] = e2, [e2, e3] = −e2
RR2 : [e1, e3] = αe1, [e3, e3] = e1, [e3, e2] = e2, [e2, e3] = −e2, α ∈ C

RR3 : [e2, e2] = e1, [e3, e3] = αe1, [e2, e3] = e1 α ∈ C/
{

0
}

RR4 : [e2, e2] = e1, [e3, e3] = e2
RR5 : [e1, e3] = e2, [e2, e3] = e1
RR6 : [e1, e3] = e2, [e2, e3] = αe1 + e2 α ∈ C

RR7 : [e1, e3] = e1, [e2, e3] = e2
RR8 : [e3, e3] = e1, [e1, e3] = e2
RR9 : [e3, e3] = e1, [e1, e3] = e1 + e2

RR10 : [e1, e2] = e1
RR11 : [e1, e3] = e1 + e2, [e2, e3] = e2
RR12 : [e1, e3] = 2e1, [e2, e3] = −e2, [e1, e2] = e3
RR13 : [e1, e3] = e1, [e2, e3] = αe3 α ∈ C/

{

0
}

Theorem 19. The centroid of three dimensional complex Leibniz algebras
are given as follows:
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Table 2: Centroids of three-dimensional Leibniz algebras

Leibniz

algebra L

Centroid Γ(L) Types of Γ(L)

RR1





a11 0 0
0 a11 0
0 0 a11



 small

RR2





a11 0 0
0 a11 0
0 0 a11



 small

RR3





a11 a12 a13

0 a11 0
0 0 a11



 small

RR4





a11 a12 a13

0 a11 0
0 0 a11



 not small

RR5





a11 0 0
0 a11 0
0 0 a11



 small

RR6





a11 0 0
a21 a11 0
0 0 a11



 (α = 0) not small





a11 0 0
0 a11 0
0 0 a11



 (α 6= 0) small

RR7





a11 0 0
0 a11 0
0 0 a11



 small

RR8





a11 0 0
0 a11 0
0 0 a11



 small

Theorem 20. [1] The isomorphism class of four-dimensional complex
nilpotent leibniz algebras are given by the following representatives
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Table 3: Centroids of three-dimensional Leibniz algebras

Leibniz algebra L Centroid Γ(L) Types of Γ(L)

RR9





a11 0 0
0 a11 a23
0 0 a11



 small

RR10





a11 0 0
0 a22 0
a31 0 a33



 not small

RR11





a11 0 0
0 a11 0
0 0 a11



 small

RR12





a11 0 0
0 a11 0
0 0 a11



 small

RR13





a11 0 0
0 a11 0
0 0 a11



 small

R1 : [e1, e1] = e2, [e2, e1] = e3, [e3, e1] = e4
R2 : [e1, e1] = e3, [e1, e2] = e4, [e2, e1] = e3, [e3, e1] = e4
R3 : [e1, e1] = e3, [e2, e1] = e3, [e3, e1] = e4
R4(α) : [e1, e1] = e3, [e1, e2] = αe4, [e2, e1] = e3, [e2, e2] = e4,

[e3, e1] = e4 α ∈
{

0, 1
}

;
R5 : [e1, e1] = e3, [e1, e2] = e4, [e3, e1] = e4
R6 : [e1, e1] = e3, [e2, e2] = e4, [e3, e1] = e4
R7 : [e1, e1] = e4, [e2, e1] = e3, [e3, e1] = e4, [e1, e2] = −e3,

[e1, e3] = −e4;
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R8 : [e1, e1] = e4, [e2, e1] = e3, [e3, e1] = e4, [e1, e2] = −e4 + e4;
[e1, e3] = −e4;

R9 : [e1, e1] = e4, [e2, e1] = e3, [e2, e2] = e4, [e3, e1] = e4;
[e1, e2] = −e3 + 2e4, [e1, e3] = −e4;

R10 : [e1, e1] = e4, [e2, e1] = e3, [e2, e2] = e4, [e3, e1] = e4,
[e1, e2] = −e3, [e1, e3] = −e4;

R11 : [e1, e1] = e4, [e1, e2] = e3, [e2, e1] = −e3, [e2, e2] = −2e3 + e4
R12 : [e1, e2] = e3, [e2, e1] = e4, [e2, e2] = −e3
R13(α) : [e1, e1] = e3, [e1, e2] = e4, [e2, e1] = −αe3, [e2, e2] = −e4

α ∈ C

R14(α) : [e1, e1] = e4, [e1, e2] = αe4, [e2, e1] = −αe4, [e2, e2] = e4;
[e3, e3] = e4 α ∈ C;

R15 : [e1, e2] = e4, [e1, e3] = e4, [e2, e1] = −e4, [e2, e2] = e4
R16 : [e1, e1] = e4, [e1, e2] = e4, [e2, e1] = −e4, [e3, e3] = e4
R17 : [e1, e2] = e3, [e2, e1] = e4
R18 : [e1, e2] = e3, [e2, e2] = e4, [e2, e1] = −e3
R19 : [e2, e1] = e4, [e2, e2] = e3
R20(α) : [e1, e2] = e4, [e2, e2] = e3, [e2, e1] =

1+α
1−α

e4 α ∈ C/
{

1
}

R21 : [e1, e2] = e4, [e2, e1] = −e4, [e3, e3] = e4

Theorem 21. The centroid of four-dimensional complex Leibniz algebras
are given as follows:

Table 4: Centroids of four-dimensional Leibniz algebras

Leibniz algebra L Centroid Γ(L) Types of Γ(L)

R1









a11 0 0 0
0 a11 0 0
0 0 a11 0
a41 a42 0 a11









not small

R2









a11 0 0 0
0 a11 0 0
0 0 a11 0
a41 a42 0 a11









small

Corollary 22. i) The centroid of a two-dimensional Leibniz algebra
are small.

ii) The dimensions of the centroids of two-dimensional Leibniz algebras vary
between one and two.

Corollary 23. i) The centroids of three-dimensional Leibniz algebras
except for the classes RR4, RR6, RR10 are small.
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Leibniz algebra L Centroid Γ(L) Types of Γ(L)

R3









a11 0 0 0
0 a11 0 0
0 0 a11 0
a41 a42 0 a11









small

R4









a11 0 0 0
0 a11 0 0
0 a32 a11 0
a41 a42 0 a11









small

R5









a11 0 0 0
a43 a11 0 0
a43 0 a11 0
a41 a42 a43 a11









not small

R6









a11 0 0 0
0 a11 0 0
0 0 a11 0
a41 a42 0 a11









small

R7









a11 0 0 0
0 a11 0 0
0 0 a11 0
a41 a42 0 a11









small

R8









a11 0 0 0
0 a11 0 0
0 0 a11 0
a41 a42 0 a11









small

R9









a11 0 0 0
0 a11 0 0
0 0 a11 0
a41 a42 0 a11









small

R10









a11 0 0 0
0 a11 0 0
0 0 a11 0
a41 a42 0 a11









small

ii) The dimensions of the centroids of three-dimensional complex Leibniz
algebras vary between one and three.
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Leibniz algebra L Centroid Γ(L) Types of Γ(L)

R11









a11 0 0 0
0 a11 0 0
a31 a32 a11 0
a41 a42 0 a11









small

R12









a11 0 0 0
0 a11 0 0
a31 a32 a11 0
a41 a42 0 a11









small

R13









a11 0 0 0
0 a11 0 0
a31 a32 a11 0
a41 a42 0 a11









small

R14









a11 0 0 0
0 a11 0 0
a31 a32 a11 0
a41 a42 a43 a11









small

R15









a11 0 0 0
0 a11 0 0
0 0 a11 0
a41 a42 a43 a11









small

R16









a11 0 0 0
0 a11 0 0
0 0 a11 0
a41 a42 a43 a11









small

R17









a11 0 0 0
0 a11 0 0
a31 a32 a11 0
a41 a42 0 a11









small

R18









a11 0 0 0
0 a11 0 0
a31 a32 a11 0
a41 a42 0 a11









small

4. Quasi-Centroids of Leibniz Algebras

This section is devoted to the description of quasi-centroids of two and three-
dimensional complex Leibniz algebras.
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Leibniz algebra L Centroid Γ(L) Types of Γ(L)

R19









a11 0 0 0
0 a11 0 0
a31 a32 a11 0
a41 a42 0 a11









small

R20









a11 0 0 0
0 a11 0 0
a31 a32 a33 0
a41 a42 0 a11









α 6= 0 not small









a11 a12 0 0
0 a11 0 0
0 0 a33 0
a41 a42 a21 a11









α = 0 not small

R21









a11 0 0 0
0 a11 0 0
0 0 a11 0
a41 a42 a43 a11









small

Theorem 24. The Quasi-centroids of two dimensional complex Leibniz
algebras are given as follows:

Table 5: Quasi-centroids of two-dimensional Leibniz algebras

Leibniz algebra Quasi-centroids Types of

L QΓ(L) QΓ(L)

L1

(

a11 0
a21 a22

)

small

L2

(

a11 0
0 a11

)

small

L3,

(

a11 0
0 a11

)

small

Theorem 25. The centroid of three dimensional complex Leibniz algebras
are given as follows:
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Table 6: Description of Quasicentroids of three-dimensional Leibniz
algebras

Leibniz Quasicentroids Dim Leibniz algebra Quasicentroids Dim
algebra L QΓ(L) L QΓ(L)

RR1





a11 0 0
0 a11 0
0 0 a11



 1 RR2





a11 0 0
0 a11 a23

0 0 a11



 2

RR3





a11 a12 a13

0 a22 0
0 0 a22



 4 RR4





a11 a12 a13

0 a22 a32

0 a32 a33



 1

Leibniz algebra Quasicentroids Dim Leibniz algebra Quasicentroids Dim

L QΓ(L) L QΓ(L)

RR5





a11 0 0
0 a11 0
0 0 a11

1

 1 RR6





a11 0 a13

0 a11 a23

0 0 a11

1

 4

RR7





a11 a12 0
a21 a22 0
0 0 a33

1

 4 RR8





a11 0 a13

a21 a22 a23

0 0 a11

1

 5

RR9





a11 0 0
a21 a22 a23

0 0 a11

1

 4 RR10





a11 0 0
0 a22 0

a31 a32 a33

1

 5

RR11





a11 0 0
0 a11 0
0 0 a11

1

 1 RR12





a11 0 0
0 a11 0
0 0 a11

1

 1

RR13





a11 0 0
0 a11 0
0 0 a11

1

 1
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