IJPAM: Volume 113, No. 2 (2017)

Title

APPROXIMATION BY GENERALIZED FABER SERIES
IN BERS SPACES ON QUASIDISKS

Authors

Mingfeng Sun
Department of Mathematics
Shaoxing University
Shaoxing, Zhejiang 312000, P.R. CHINA

Abstract

In this paper, by the conformal natural reflection introduced by Earle and Nag ,we establish an integral representation for Bers space $B(D)$ where $D$ is a quasidisk, and then we define generalized Faber series of functions in $B(D)$. We find a subspace $B_1(D)$ of $B(D)$ such that each $\varphi\in B_1(D)$ converges uniformly on compact subsets of $D$. Also, if a series $\sum_{m=3}^{\infty}a_mF_m^{'''}(z)$ is convergent to $\varphi\in B_1(D)$ in the norm $\Vert\Vert _D$, we show that the $a_m$ are the generalized Faber coefficients $a_m(\varphi)$ of $\varphi$.

History

Received: October 26, 2016
Revised: December 12, 2016
Published: March 19, 2017

AMS Classification, Key Words

AMS Subject Classification: 30C62,30C10
Key Words and Phrases: Faber series, Bers space, quasidisk,reproducing formula, conformally natural reflection

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
L.V. Ahlfors, Quasiconformal reflections, Acta Math., 109 (1963), 291-301, doi: https://doi.org/10.1007/BF02391816.

2
L.V. Ahlfors, Lectures on Quasiconformal Mappings, Second Edition, American Mathematical Society, USA (2006), doi: https://doi.org/10.1090/ulect/038.

3
L. Bers, A non-standard integral equation with applications to quasiconformal mappings, Acta Math.,116(1966), 113-134. doi:10.1007/BF02392814.

4
A. Cavus, Approximation by generalized Faber series in Bergman spaces on finite regions with a quasiconformal boundary, J. Approx theory, 87(1996), 25-35. doi:10.1006/jath.1996.0090.

5
A. Douady, C.J. Earle, Conformally natural extension of homeomorphisms of the circle, Acta Math., 157 (1986), 23-48, doi: https://doi.org/10.1007/BF02392590.

6
C.J. Earle, S. Nag, Conformally natural reflections in Jordan curves with applications to Teichmüller spaces, Holomorphic Function and Moduli I (1987), 179-194, doi: https://doi.org/10.1007/978-1-4613-9611-6-13.

7
C.J. Earle, F.P. Gardiner, and N. Lakic, Asymptotic Teichmüller space, Part I: The complex structure, Contemp. Math., 256 (2000), 17-38.

8
C.J. Earle, F.P. Gardiner and N. Lakic, Asymptotic Teichmüller space, Part II: The metric structure, Contemp. Math., 355 (2004), 187-219.

9
C.J. Earle, V. Markovic, and D. Saric, Barycentric extension and the Bers embedding for asymptotic Teichmüller space,Contemp. Math., 311 (2002), 87-105, doi: https://doi.org/10.1090/conm/311.

10
D. Gaier, Lectures on Complex Approximation, Birkhäuser Boston, USA, 1987, doi: https://doi.org/10.1007/978-1-4612-4814-9.

11
F.P. Gardiner, N. Lakic, Quasiconformal Teichmüller Theory, Amer. Math.Soc., Providence, RI, USA, 2000, doi: https://doi.org/10.1090/surv/076.

12
F.P. Gardiner, D. Sullivan, Symmetric structures on a closed curve, Amer. J. Math., 114 (1992), 683-736, doi: https://doi.org/10.2307/2374795.

13
D.M. Israfilov, The approximation of functions by partial sums of generalized Faber series at the domains with quasi-conformal boundary, Izv. Asad. Nauk. Az. SSR., 5 (1981), 10-18.

14
O. Lehto, Univalent Functions and Teichmüller Spaces, Springer-Verlag, New York, 1987, doi: https://doi.org/10.1007/978-1-4613-8652-0.

15
S. Nag, The Complex Analytic Theory of Teichmüller Spaces, Wiley-Interscience, USA, 1988.

16
Ch. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Germany, 1975.

17
P.K. Suetin, Series in faber polynomials and several generalizations, J. Math. Sci., 5 (1976), 502-551, doi: https://doi.org/10.1007/BF01084448.

How to Cite?

DOI: 10.12732/ijpam.v113i2.5 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 113
Issue: 2
Pages: 241 - 250


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).