IJPAM: Volume 113, No. 2 (2017)

Title

ON UPPER AND LOWER $\omega$-IRRESOLUTE MULTIFUNCTIONS

Authors

G. Balaji$^1$, G. Ganesh$^2$, N. Rajesh$^3$
$^1$Department of Mathematics
Thangavelu Engineering College
Chennai, Tamilnadu, INDIA
$^{2,3}$Department of Mathematics
Rajah Serfoji Govt. College
Thanjavur, 613005, Tamilnadu, INDIA

Abstract

In this paper we define upper (lower) $\omega$-irresolute multifunction and obtain some characterizations of such a multifunction.

History

Received: November 1, 2016
Revised: January 19, 2017
Published: March 19, 2017

AMS Classification, Key Words

AMS Subject Classification: 54C05, 54C601, 54C08, 54C10
Key Words and Phrases: Topological spaces, $\omega$-open set, $\omega$-irresolute multifunctions.

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
K. Al-Zoubi and B. Al-Nashef, The topology of $\omega$-open subsets, Al-Manarah (9) (2003), 169-179.

2
A. Al-omari ans M. S. M. Noorani, Contra-$\omega$-continuous and almost $\omega$-continuous functions, Int. J. Math. Math. Sci. (9) (2007), 169-179.

3
T. Banzaru, Multifunctions and $M$-product spaces, Bull. Stin. Tech. Inst. Politech. Timisoara, Ser. Mat. Fiz. Mer. Teor. Apl., 17(31)(1972), 17-23.

4
G. Balaji, G. Ganesh and N. Rajesh, On upper and lower $\omega$-continuous multifunctions, Asian Journal of Research in Social Sciencesand Humanities, 6(10) 2016, 1920-1928.

5
I. Kovacevic, Subsets and paracompactness, Univ. u. Novom Sadu, Zb. Rad. Prirod. Mat. Fac. Ser. Mat., 14(1984), 79-87.

6
H. Z. Hdeib, $\omega$-closed mappings, Revista Colombiana Mat., 16(1982), 65-78.

7
N. Levine, Semiopen sets and semicontinuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.

8
T. Noiri and V. Popa, A generalization of $\omega$-continuity, Fasciculi Mathematici, 45(2010), 71-86.

9
N. Rajesh, On Total $\omega$-continuity, Strong $\omega$-continuity and Contran $\omega$-continuity, Soochow J. Math., 33(4)(2007),679-690.

10
M. Sheik John, A study on generalizations of closed sets and continuous maps in topological spaces, Ph. D. Thesis, Bharathiyar University, Coimbatore, India (2002).

11
M. Sheik John and P. Sundaram, On decomposition of continuity, Bull. Allahabad Math. Soc., 22(2007), 1-9.

12
P. Sundaram and M. Sheik John, Weakly closed and weakly continuous maps in topological spaces, Proc. 82$^{nd}$ session of the Indian Science Congress, Calcutta, 1995 (P-49).

13
G. T. Whyburn, Retracting multifunctions, Proc. Nat. Acad. Sci., 59(1968), 343-348.

How to Cite?

DOI: 10.12732/ijpam.v113i2.7 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 113
Issue: 2
Pages: 273 - 282


$\omega$-IRRESOLUTE MULTIFUNCTIONS%22&as_occt=any&as_epq=&as_oq=&as_eq=&as_publication=&as_ylo=&as_yhi=&as_sdtAAP=1&as_sdtp=1" title="Click to search Google Scholar for this entry" rel="nofollow">Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).