ON A GENERALIZATION OF SUPPLEMENT SUBMODULES

Celil Nebiyev
Department of Mathematics
Ondokuz Maymaths University
55270, Kurupelit, Atakum, Samsun, TURKEY

Abstract: In this work, some properties of g-supplement submodules are investigated. Let V be a g-supplement of an essential submodule U in M. Then it is possible to define a bijective map between essential maximal submodules of V and essential maximal submodules of M which contain U. It is also proved that $\text{Rad}_g V = V \cap \text{Rad}_g M$.

AMS Subject Classification: 16D10, 16D70.
Key Words: g-Small Submodules, Radical, Supplement, Submodules, g-Supplemented Modules.

1. Introduction

Throughout this paper all rings will be associative with identity and all modules will be unital left modules.

Let R be a ring and M be an R–module. We will denote a submodule N of M by $N \leq M$. Let M be an R-module and $N \leq M$. If $L = M$ for every submodule L of M such that $M = N + L$, then N is called a small submodule of M and denoted by $N \ll M$. Let M be an R-module and $N \leq M$. If there exists a submodule K of M such that $M = N + K$ and $N \cap K = 0$, N is called a direct summand of M and it is denoted by $M = N \oplus K$. For any module M, we have $M = M \oplus 0$. $\text{Rad}M$ indicates the radical of M. A submodule N of an R-module M is called an essential submodule and denoted by $N \trianglelefteq M$ in case $K \cap N \neq 0$ for every submodule $K \neq 0$.
The intersection of all essential maximal submodules of an \(R \)-module \(M \) is called the generalized radical of \(M \), denoted by \(\text{Rad}_g M \) (in [8], it is denoted by \(\text{Rad}_e M \)). If \(M \) has not any essential maximal submodule, then we denote \(\text{Rad}_g M = M \). Let \(M \) be an \(R \)-module and \(K \) be a submodule of \(M \). \(K \) is called a generalized small submodule of \(M \) if for every essential submodule \(T \) of \(M \) with the property \(M = K + T \) implies that \(T = M \), then we write \(K \ll_g M \) (in [8], it is called an e-small submodule of \(M \) and denoted by \(K \ll_e M \)). It is clear that every small submodule is a generalized small submodule but the converse is not true generally. Let \(M \) be an \(R \)-module and \(K \) be a submodule of \(M \). \(K \) is called a generalized small submodule of \(M \) if for every essential submodule \(T \) of \(M \) with the property \(M = K + T \) implies that \(T = M \), then we write \(K \ll_g M \) (in [8], it is called an e-small submodule of \(M \) and denoted by \(K \ll_e M \)).

There are some important properties of g-small submodules in [2], [5], [6] and [8].

Lemma 1.1. Let \(M \) be an \(R \)-module and \(K, N \leq M \). Consider the following conditions. [6, 8]

1. If \(K \leq N \) and \(N \) is a generalized small submodule of \(M \), then \(K \) is a generalized small submodule of \(M \).
2. If \(K \) is contained in \(N \) and a generalized small submodule of \(N \), then \(K \) is a generalized small submodule in submodules of \(M \) which contains \(N \).
3. Let \(f : M \to N \) be an \(R \)-module homomorphism. If \(K \ll_g M \), then \(f(K) \ll_g N \).
4. If \(K \ll_g L \) and \(N \ll_g T \) for \(L, T \leq M \), then \(K + N \ll_g L + T \).

Corollary 1.2. Let \(M \) be an \(R \)-module and \(K \leq N \leq M \). If \(N \ll_g M \), then \(N/K \ll_g M/K \).

Corollary 1.3. Let \(M \) be an \(R \)-module, \(K \ll_g M \) and \(L \leq M \). Then \((K + L)/L \ll_g M/L \).

Lemma 1.4. Let \(M \) be an \(R \)-module. Then \(\text{Rad}_g M = \sum_{L \ll_g M} L \). [2]

Corollary 1.5. Let \(M \) be an \(R \)-module and \(x \in \text{Rad}_g M \). Then \(Rx \ll_g M \). [2]

Definition 1.6. Let \(M \) be an \(R \)-module and \(U, V \leq M \). If \(M = U + V \) and \(M = U + T \) with \(T \leq V \) implies that \(T = V \), then \(V \) is called a g-supplement of \(U \) in \(M \). If every submodule of \(M \) has a g-supplement in \(M \), then \(M \) is called a g-supplemented module. [2]

Supplemented modules are g-supplemented.
Definition 1.7. Let M be an R-module and $V \leq M$. If V is a g-supplement of any submodule of M, then V is called a g-supplement submodule in M.

Clearly we see that every supplement submodule is g-supplement.

2. Some Properties of G-Supplement Submodules

Lemma 2.1. Let M be an R-module, $U \leq M$ and $V \leq M$. Then V is a g-supplement of U in M if and only if $M = U + V$ and $U \cap V \ll_g V$. (See [2])

Proposition 2.2. Let M be an R-module, $V \leq M$, U be an essential maximal submodule of M and V be a g-supplement of U in M. Then $U \cap V$ is the unique essential maximal submodule of V. In this case $U \cap V = \text{Rad}_g V$.

Proof. Since $U + V = M$ and U is a maximal submodule of M, then $V \not\leq U$. Then by [4] Lemma 2.8, $U \cap V$ is a maximal submodule of V. Since $U \leq M$, we clearly see that $U \cap V \leq V$. Then $\text{Rad}_g V \leq U \cap V$. Since V is a g-supplement of U, $U \cap V \ll_g V$. Then by Lemma 1.4, $U \cap V \leq \text{Rad}_g V$. Hence $\text{Rad}_g V = U \cap V$ and we clearly see that $U \cap V$ is the unique essential maximal submodule of V. □

Lemma 2.3. Let M be an R-module, $K \leq V \leq M$ and V be a g-supplement of an essential submodule U of M. Then $K \ll_g V$ if and only if $K \ll_g M$.

Proof. (\Rightarrow) Clear from Lemma 1.1.

(\Leftarrow) Let $T \leq V$ and $K + T = V$. Since $U + V = M$, $U + K + T = M$. Since $U \leq M$, then $(U + T) \leq M$. Then by $K \ll_g M$, $U + T = M$. Since V is a g-supplement of U in M, $T = V$. Thus $K \ll_g V$. □

Theorem 2.4. Let M be an R-module, $V \leq M$ and V be a g-supplement of an essential submodule of M. Then $\text{Rad}_g V = V \cap \text{Rad}_g M$.

Proof. By Lemma 1.1 and Lemma 1.4, we clearly see that $\text{Rad}_g V \leq V \cap \text{Rad}_g M$. Let $x \in V \cap \text{Rad}_g M$. Then $x \in V$ and $x \in \text{Rad}_g M$. Since $x \in \text{Rad}_g M$, by Corollary 1.5, $Rx \ll_g M$. Then by Lemma 2.3, $Rx \ll_g V$ and $x \in \text{Rad}_g V$. Hence $V \cap \text{Rad}_g M \leq \text{Rad}_g V$ and since $\text{Rad}_g V \leq V \cap \text{Rad}_g M$, $\text{Rad}_g V = V \cap \text{Rad}_g M$. □
Lemma 2.5. Let V be a g-supplement of U in M, $T \leq V$ and $K \subseteq V$. Then T is a g-supplement of K in V if and only if T is a g-supplement of $U + K$ in M.

Proof. (\Rightarrow) Let T be a g-supplement of K in V. Then $V = K + T$ and since $M = U + V$, $M = U + K + T$. Let $M = U + K + L$ with $L \leq T$. Since $K \subseteq V$ and $L \leq V$, $(K + L) \leq V$. Then by V being a g-supplement of U in M, $K + L = V$. Since $L \leq T$ and T is a g-supplement of K in V, $L = T$. Hence T is a g-supplement of $U + K$ in M.

(\Leftarrow) Let T be a g-supplement of $U + K$ in M. Then $M = U + K + T$. Since $K \subseteq V$ and $L \leq V$, $(K + T) \leq V$. Then by V being a g-supplement of U in M, $K + T = V$. Let $K + L = V$ with $L \leq T$. Then by $M = U + V$, $M = U + K + L$. Since $L \leq T$ and T is a g-supplement of $U + K$ in M, $L = T$. Hence T is a g-supplement of K in V. □

Corollary 2.6. Let V be a supplement of U in M, $T \leq V$ and $K \subseteq V$. Then T is a g-supplement of K in V if and only if T is a g-supplement of $U + K$ in M.

Corollary 2.7. Let $M = U \oplus V$, $T \leq V$ and $K \subseteq V$. Then T is a g-supplement of K in V if and only if T is a g-supplement of $U + K$ in M.

Lemma 2.8. Let U and V be mutual g-supplements in M, $S \subseteq U$, $K \subseteq V$, L be a g-supplement of S in U and T be a g-supplement of K in V. Then $L + T$ is a g-supplement of $K + S$ in M.

Proof. Since $U = S + L$ and $V = K + T$, $M = U + V = S + L + K + T = K + S + L + T$. Since V is a g-supplement of U in M, $K \subseteq V$ and T is a g-supplement of K in V, then by Lemma 2.5, T is a g-supplement of $U + K$ in M. Then $(U + K) \cap T \leq_g T$. Similarly, we can prove that $(V + S) \cap L \leq_g L$. Hence $(K + S) \cap (L + T) \leq (K + S + L) \cap T + (K + S + T) \cap L = (U + K) \cap T + (V + S) \cap L \leq_g T + L = L + T$ and $L + T$ is a g-supplement of $K + S$ in M. □

Corollary 2.9. Let U and V be mutual supplements in M, $S \subseteq U$, $K \subseteq V$, L be a g-supplement of S in U and T be a g-supplement of K in V. Then $L + T$ is a g-supplement of $K + S$ in M.

Corollary 2.10. $M = U \oplus V$, $S \subseteq U$, $K \subseteq V$, L be a g-supplement of S in U and T be a g-supplement of K in V Then $L + T$ is a g-supplement of $K + S$ in M.
Lemma 2.11. Let V be a g-supplement of U in M, $U \triangleleft M$ and K be an essential maximal submodule of M. Then $U + K$ is an essential maximal submodule of M. In this case $K = (U + K) \cap V$.

Proof. Since V is a g-supplement of U in M, $U \cap V \ll_g V$. Then, by K being an essential maximal submodule of V, $U \cap V \leq K$. Hence, by Modular law, $K = U \cap V + K = (U + K) \cap V$. Since $U \triangleleft M$, $(U + K) \triangleleft M$. Since $M = U + V \Rightarrow V \cap (U + K) = \frac{V}{U + V + K} = \frac{V}{K}$ and K is a maximal submodule of V, $U + K$ is a maximal submodule of M. Hence $U + K$ is an essential maximal submodule of M. □

Proposition 2.12. Let M be an R–module, $V \leq M$, $U \triangleleft M$ and V be a g-supplement of U in M. Then it is possible to define a bijective map between essential maximal submodules of V and essential maximal submodules of M which contain U.

Proof. Let $\Gamma = \{ K \mid U \leq K, K$ is essential maximal in $M \}$, $\Lambda = \{ T \mid T$ is essential maximal in $V \}$. We can define a map $f : \Gamma \rightarrow \Lambda$, $K \rightarrow f(K) = K \cap V$. Let $K \in \Gamma$. Since $U \leq K$ and K is maximal in M, $V \nsubseteq K$ and then by Lemma 2.12 $K \cap V$ is a maximal submodule of V. Since $K \triangleleft M$, $K \cap V \leq V$. That is, f is a function.

Let $T \in \Lambda$. Since T is essential maximal in V, then by Lemma 2.11, $U + T \in \Gamma$ and $f(U + T) = (U + T) \cap V = T$. Thus f is surjective.

Let $f(K) = f(L)$ for $K, L \in \Gamma$. Then $K \cap V = L \cap V$. Since $U \leq K$ and $U \leq L$, then by Modular law $K = M \cap K = (U + V) \cap K = U + V \cap K = U + V \cap L = (U + V) \cap L = M \cap L = L$.

Hence f is bijective. □

Definition 2.13. Let M be an R–module and $U, V \leq M$. If $U + V = M$ and $U \cap V \ll g M$, then V is called a weak g-supplement of U in M. M is called weakly g-supplemented if every submodule of M has a weak g-supplement in M. (See also [3])

Definition 2.14. A submodule L of M is said to g-lie above a submodule N in M if $N \leq L$ and $T = M$ for every $T \leq M$ such that $N \leq T \leq M$ and $\frac{L}{N} + \frac{T}{N} = \frac{M}{N}$.

Lemma 2.15. Let M be an R–module and $N \leq L \leq M$. Then L g-lies above N in M if and only if $N + T = M$ for every $T \leq M$ such that $L + T = M$.

Proof. (\implies) Let $L + T = M$ with $T \leq M$. Then $\frac{L}{N} + \frac{N + T}{N} = \frac{M}{N}$ and since L g-lies above N and $(N + T) \leq M$, $N + T = M$.

(\impliedby) $\frac{L}{N} + \frac{T}{N} = \frac{M}{N}$ with $N \leq T \leq M$. Then $L + T = M$ and by hypothesis, $N + T = M$. Since $N \leq T$, $T = M$. Hence L g-lies above N in M.

Lemma 2.16. Let $M = U + V$ and $M = T + U \cap V$. Then $M = U + T \cap V = V + T \cap U$.

Proof. See [1, Lemma 1.24].

Theorem 2.17. Let $L \leq M$, $N \leq L$ and L g-lie above N in M. If L and N have essential weak g-supplements in M, then they have the same essential weak g-supplements in M.

Proof. Let X be an essential weak g-supplement of L in M. Then $L + X = M$ and by Lemma 2.15, $N + X = M$. Since X is a weak g-supplement of L in M and $N \leq L$, $N \cap X \leq L \cap X \ll_g M$. Thus X is an essential weak g-supplement of N in M.

Let T be an essential weak g-supplement of N in M. Then $N + T = M$ and by $N \leq L$, $L + T = M$. Let $L \cap T + S = M$ with $S \leq M$. Then by Lemma 2.16, $L + T \cap S = M$ and by Lemma 2.15, $N + T \cap S = M$. By also Lemma 2.16, $N \cap T + S = M$ and because of $L \cap T \ll_g M$ and $S \leq M$, $S = M$. Thus $L \cap T \ll_g M$ and T is an essential weak g-supplement of L in M.

Theorem 2.18. Let $L \leq M$, $N \leq L$ and L g-lie above N in M. If L and N have essential g-supplements in M, then they have the same essential g-supplements in M.

Proof. Let X be an essential g-supplement of L in M. Then $L + X = M$ and by Lemma 2.15, $N + X = M$. Since X is a g-supplement of L in M and $N \leq L$, $N \cap X \leq L \cap X \ll_g X$. Thus X is an essential g-supplement of N in M.

Let T be an essential g-supplement of N in M. Then $N + T = M$ and by $N \leq L$, $L + T = M$. Let $L + S = M$ with $S \leq T$. Since $S \leq T$ and $T \leq M$, $S \leq M$. Then by Lemma 2.15, $N + S = M$ and since T is a g-supplement of N in M, $S = T$. Hence T is an essential g-supplement of L in M.

Theorem 2.19. Let M be an R-module, V be a weak g-supplement of U in M and $L \leq U$. If $M = V + L$, then U g-lies above L in M.
Proof. Let $U + T = M$ with $T \trianglelefteq M$. Since V is a weak g-supplement of U in M, $M = U + V$ and $U \cap V \ll_g M$. Since $M = V + L$ and $L \leq U$, by Modular law, $U = U \cap V + L$. Then $M = U + T = U \cap V + L + T$ and since $U \cap V \ll_g M$ and $(L + T) \leq M$, $L + T = M$. Hence by Lemma 2.15, U g-lies above L in M.

References

