IJPAM: Volume 113, No. 3 (2017)

Title

ON SPECIAL CONCIRCULAR $R$-LIE-RECURRENCE
IN SPECIAL FINSLER SPACES

Authors

G.P. Yadav$^1$, P.N. Pandey$^2$
$^{1, 2}$Department of Mathematics
University of Allahabad
Allahabad, 211002, INDIA

Abstract

In this paper we discuss a special concircular $R$-Lie-recurrence in special Finsler spaces such as $R$-recurrent, $R$-symmetric, $R$-birecurrent and $R$-bisymmetric. Apart from other theorems, it is being proved that an $R$-recurrent Finsler space can not admit a special concircular $R$-Lie-recurrence while a non-flat $R$-symmetric Finsler space $F_n(n>2)$ admitting a special concircular $R$-Lie-recurrence is necessarily of constant Riemannian curvature.

History

Received: October 13, 2016
Revised: December 21, 2016
Published: March 28, 2017

AMS Classification, Key Words

AMS Subject Classification: 53B40.
Key Words and Phrases: Finsler space, $R$-Lie-recurrence, Riemannian curvature, special concircular vector field, R-recurrent Finsler space.

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
C.K. Mishra, Gautam Lodhi, On Curvature Inheriting Symmetry in Finsler Space, Acta Univ. Apulensis Math. Inform., 30 (2012), 39-48.

2
H. Rund, The Differential Geometry of Finsler Spaces, Springer-Verlag, Berlin (1959).

3
K.L. Duggal, Curvature Inheriting Symmetry in Riemannian Space with Applications of Fluid Space Times, J. Math. Phys., 33, 9 (1992), 2989-2997.

4
K. Yano, The Theory of Lie-derivative and its Application, North-Holland Publishing Co., Amsterdam (1957).

5
P. N. Pandey, On Lie recurrent Finsler Manifolds, Indian J. Math., 24, 1-3 (1982), 135-143.

6
P.N. Pandey, A Symmetric Finsler Manifold with a Concircular Vector Field, Proc. Nat. Acad. Sci. India Sect., A54, 3 (1984), 271-273.

7
P.N. Pandey, A Recurrent Finsler Manifold with a Concircular Vector Field, Acta Math. Acad. Sci. Hungar., 35, 3-4 (1980), 465-466.

8
P.N. Pandey, Certain Types of Affine Motion in a Finsler Manifold. I., Colloq. Math., 49, 2 (1985), 243-252.

9
P.N. Pandey, On Bisymmetric Finsler manifolds, Math. Education, 11, 4 (1977), A77-A80.

10
P.N. Pandey, Reema Verma, Infinitesimal Affine Motion in a Finsler Space Equipped with Cartan's Connection, J. Int. Acad. Phys. Sci., 1, 1-2 (1997), 39-54.

11
P.N. Pandey, S. Saxena, On Projective N-curvature Inheritance, Acta Math. Hungar., 136, 1-2 (2012), 30-38.

12
P.N. Pandey, Vaishali Pandey, On $K$-curvature Inheritance in a Finsler Space, J. int. Acad. Phys. Sci., 13, 4 (2009), 395-400.

13
P.N. Pandey, Vaishali Pandey, On $K$-Lie-recurrence in a Finsler Space, South Asian J. Math., 3, 6 (2013), 402-410.

14
S. Saxena, P.N. Pandey, On Lie-recurrence in Finsler Spaces, Differ. Geom. Dyn. Syst., 13 (2011), 201-207.

How to Cite?

DOI: 10.12732/ijpam.v113i3.4 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 113
Issue: 3
Pages: 415 - 423


$R$-LIE-RECURRENCE IN SPECIAL FINSLER SPACES%22&as_occt=any&as_epq=&as_oq=&as_eq=&as_publication=&as_ylo=&as_yhi=&as_sdtAAP=1&as_sdtp=1" title="Click to search Google Scholar for this entry" rel="nofollow">Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).