IJPAM: Volume 113, No. 3 (2017)
Title
CHARACTERIZATION OF k-DISJOINTNESSPRESERVING NON-LINEAR OPERATORS
BETWEEN BANACH LATTICES
Authors
William Feldman


University of Arkansas
Fayetteville, AR 72701, USA

Embassy Prime CV Raman Nagar
Bangalore 560093, INDIA
Abstract
A map T, not necessarily linear, between two Banach lattices
















History
Received: November 15, 2016
Revised: January 10, 2016
Published: March 28, 2017
AMS Classification, Key Words
AMS Subject Classification: 46B42,47H07,54G05.
Key Words and Phrases: Disjointness preserving, k-disjointness preserving, extremally disconnected, non-linear operators, Carleman operators, orthogonally additive.
Download Section
Download paper from here.You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.
Bibliography
- 1
- Abramovich, Y.A., Multiplicative representation of disjointness preserving operators, Indag. Math. 45 (1983) 265-279, doi: https://doi.org/10.1016/1385-7258(83)90062-8.
- 2
- Benyamini, Y., Lassalle, S. and Llavona, J., Homogeneous orthogonally additive polynomials on Banach lattices, Bull. London Math. Soc. 38, 3 (2006) 459-469.
- 3
- Bernau, S.J., Huijsmans, C.B. and De Pagter, B., Sums of Lattice Homomorphisms, Proc. Amer Math. Soc. 115, 1 (1992) 151-156, doi: https://doi.org/10.1090/S0002-9939-1992-1086322-8.
- 4
- Carothers, D.C. and Feldman, W.A., Sums of homomorphisms on Banach lattices, J. Operator theory 24 (1990) 337-349
- 5
- Feldman, W.A., Separation properties for Carleman operators on Banach lattices, Positivity 7 (2003) 41-45 doi: https://doi.org/10.1023/A:1025818931354.
- 6
- Feldman, W.A and Singh, P., Positively Decomposable maps between Banach lattices, Positivity 12 (2008) 495-502, doi: https://doi.org/10.1007/s11117-007-2115-5.
- 7
- Grobler, J.J. and Van Eldik, P., Carleman operators on Riesz spaces, Indag. Math. 45 (1983) 421-433, doi: https://doi.org/10.1016/0019-3577-90-90031-H.
- 8
- Pérez-García, David and Ignacio Villanueva, Orthogonally additive polynomials on spaces of continuous functions, J. Math. Anal. Appl. 306, 1 (2005) 97-105, doi: https://doi.org/10.1016/j.jmaa.2004.12.036.
- 9
- Schaefer, H.H., Banach lattices and positive operators, Berlin, Heidelberg, New York: Springer-Verlag (1974), doi: https://doi.org/10.1007/978-3-642-65970-6.
How to Cite?
DOI: 10.12732/ijpam.v113i3.6 How to cite this paper?Source: International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 113
Issue: 3
Pages: 441 - 453
Google Scholar; DOI (International DOI Foundation); WorldCAT.
This work is licensed under the Creative Commons Attribution International License (CC BY).