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Abstract: We consider the inverse problem of determining the time-dependent diffusivity in

one-dimensional heat equation with periodic boundary conditions and nonlocal over-specified

data. The problem is highly nonlinear and it serves as a mathematical model for the techno-

logical process of external guttering applied in cleaning admixtures from silicon chips. The

well-posedness conditions for the existence, uniqueness and continuous dependence upon the

data of the classical solution of the problem are established.
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1. Introduction

Parameter identification from over-specified data plays an important role in
applied mathematics, physics and engineering. The problem of identifying the
diffusivity was investigated by many researchers under various boundary and
over-determination conditions, [1-5]. It is important to note that in [6], the
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time-dependent diffusion coefficient has been determined from different over-
determination conditions in the case of self-adjoint auxiliary spectral problems.
In the present work, a nonlocal over-specified data is used together with periodic
boundary conditions for the determination of the time-dependent diffusivity.
The mathematical formulation of the inverse problem under investigation is
given in Section 2. In Section 3, the existence, uniqueness and continuous
dependence upon the data of the classical solution of the inverse problem for
some small parameters are established by using the generalized Fourier method.

2. Mathematical Formulation

In the rectangle QT = {(x, t)|0 < x < 1, 0 < t ≤ T} = (0, 1) × (0, T ], we
consider the inverse problem given by the heat equation

∂u

∂t
(x, t) = k(t)

∂2u

∂x2
(x, t), (x, t) ∈ QT , (1)

with unknown concentration/temperature u(x, t) and unknown time-dependent
diffusivity k(t) > 0, subject to the initial condition

u(x, 0) = ϕ(x), 0 ≤ x ≤ 1, (2)

where ϕ is a given function, the periodic and heat flux boundary conditions

u(0, t) = u(1, t), t ∈ (0, T ], (3)

aux(0, t) = ux(1, t), t ∈ (0, T ], (4)

and the over-determination condition, [7, 8],

p(t)u(0, t) +

∫ 1

0
u(x, t)dx = E(t), t ∈ [0, T ], (5)

with p(t) = α+ βk−γ(t), where α, β, γ > 0 are segregation coefficients.
This problem for a = 0 for the first time has been considered in [9]. This

problem arises in the mathematical modeling of the technological process of
external guttering applied, for example (if a = 0), in cleaning admixtures from
silicon chips, [8]. In this case, ϕ(x) is the distribution of admixture in the chip
for x ∈ (0, 1) at the initial time t = 0, while u(x, t) is its distribution at time
t. Condition (3) means that the admixtures in the left and right boundaries of
the chip are the same. For a = 0 the adiabatic condition (4) means that the
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right boundary x = 1 of the chip is perfectly insulated. For a 6= 0 the adiabatic
condition (4) is the proportional property to the flow on the opposite points of
the boundary. Therefore, reasonably assume that a ≥ 0. Condition (5) means
that part of the substance is concentrated (segregated) on the left side x = 0
of the chip, [7, 8].

When α = β = 0, then the resulting inverse problem has been previously
investigated in [1], and it is the purpose of this paper to investigate the non-
trivial case when α and β are non-zero.

3. Existence and Uniqueness

The pair (k(t), u(x, t)) from the class C[0, T ]× (C2,1(QT )∩C1,0(QT )) for which
conditions (1)-(5) are satisfied and k(t) > 0 on the interval [0, T ] is called the

classical solution of the inverse problem (1)-(5).
The analysis is similar to that of [10] for the identification of the time-

dependent blood perfusion coefficient in the bio-heat equation. Consider the
spectral problem

−X
′′

(x) = λX(x), 0 ≤ x ≤ 1, (6)

aX
′

(0) = X
′

(1), X(0) = X(1). (7)

This problem if a = 0 is well-known in [11], as the auxiliary spectral problem
for solving a nonlocal boundary value problem for heat equation by the Fourier
method.

The case a = 1 is simpler and we will not go into details. When a = −1
the boundary conditions (7) are irregular. This case will not be considered.
Suppose that a 6= ±1. In this case the problem (6) - (7) has double eigenvalues
λk = (2kπ)2 (except for the first λ0 = 0). Eigenfunctions of the problem are
the following:

X0(x) = 2, λ0 = 0;
X2k−1(x) = 4 cos(2πkx), λk = (2πk)2, k = 1, 2, ....

(8)

To avoid the problem of choosing the associated functions [12, 13] for their
construction we use the equation:

−X ′′(x) = λkX(x) +
√
λkX2k−1(x), 0 < x < 1;

αX ′(0) = X ′(1), X(0) = X(1).
(9)

Then associated functions are in the form:

X2k(x) = 2
1− (1− α) x

1− α
sin(2πkx), k = 1, 2, .... (10)
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This system of functions {X0(x),X2k−1(x),X2k(x)} form a Riesz basis in L2(0, 1)
[14]. System biorthogonal to it is the following system:

Y0(x) =
α+ (1− α) x

1 + α
, Y2k−1(x) =

α+ (1− α) x

1 + α
cos(2πkx),

Y2k(x) = 2
1− α

1 + α
sin(2πkx), k = 1, 2, .... (11)

The following lemmas are important for the mathematical analysis of the
inverse problem.

Lemma 1. If φ(x) ∈ C3[0, 1] satisfies the conditions φ(0) = φ(1), aφ
′

(0) =
φ

′

(1), φ
′′

(0) = φ
′′

(1), then the inequalities

∞
∑

n=1

n2|φ2n| ≤ C1‖φ‖C3[0,1],

∞
∑

n=1

n|φ2n−1| ≤ C2‖φ‖C3[0,1] (12)

hold, where C1 and C2 are constants, φn =
∫ 1
0 φ(x)Yn(x)dx.

Proof. Because φ(0) = φ(1), φ
′′

(0) = φ
′′

(1), the equality

φ2n =

∫ 1

0
φ(x) sin(2πnx)dx = − 1

8π3n3

∫ 1

0
φ

′′′

(x) cos(2πnx)dx

holds by three times integrating by parts. Analogously, by integrating by parts
twice and using that φ(0) = φ(1), aφ

′

(0) = φ
′

(1), we obtain that

φ2n−1 =

∫ 1

0
φ(x)x cos(2πnx)dx = −

∫ 1

0

xφ
′′

+ 2φ
′

4π2n2
cos(2πnx)dx.

From the earlier discussion, by using the Schwarz and Bessel inequalities,
we obtain

∞
∑

n=1

n2|φ2n| ≤
1

8π3

[

∞
∑

n=1

1

n2

]
1
2
[

∞
∑

n=1

(
∫ 1

0
φ

′′′

(x) cos(2πnx)dx

)2
]

1
2

≤

≤ C1‖φ
′′′‖L2[0,1] ≤ C1‖φ‖C3[0,1]

and

∞
∑

n=1

n|φ2n−1| ≤
[

∞
∑

n=1

1

n2

]
1
2





∞
∑

n=1

(

∫ 1

0

xφ
′′

+ 2φ
′

4π2
cos(2πnx)dx

)2




1
2

≤

≤ C2

2
‖xφ′′

+ 2φ
′‖L2[0,1] ≤ C2‖φ‖C3[0,1]

for some constants C1 and C2.
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Lemma 2. If km(t) ∈ C[0, T ] satisfies the condition 0 < a ≤ km(t), m =
1, 2, then for ∀n ∈ N and ∀t ∈ [0, T ], the inequality

∣

∣

∣
e−n

∫ t

0
k1(s)ds − e−n

∫ t

0
k2(s)ds

∣

∣

∣
≤ 1

ae
‖k1 − k2‖C[0,T ] (13)

holds.

Proof. For arbitrary fixed t ∈ [0, T ] and n ∈ N, by using the mean value
theorem for the function e−x, we obtain that there exists θ between n

∫ t

0 k1(s)ds

and n
∫ t

0 k2(s)ds such that

∣

∣

∣
e−n

∫ t

0
k1(s)ds − e−n

∫ t

0
k2(s)ds

∣

∣

∣
= e−θ

∣

∣

∣

∣

n

∫ t

0
k1(s)ds− n

∫ t

0
k2(s)ds

∣

∣

∣

∣

.

By using that xe−bx ≤ 1
be
; x ≥ 0, b = const > 0, we obtain that

n

eθ

∣

∣

∣

∣

∫ t

0
(k1(s)− k2(s))ds

∣

∣

∣

∣

≤ nt

enat
‖k1 − k2‖C[0,T ] ≤

1

ae
‖k1 − k2‖C[0,T ],

and this proves (13).

The main result of Section 3.1 is in the following theorem.

Theorem 3. Let the functions ϕ(x) ∈ C3[0, 1], E(t) ∈ C[0, T ] satisfy the
conditions

ϕ(0) = ϕ(1), aϕ
′

(0) = ϕ
′

(1), ϕ
′′

(0) = ϕ
′′

(1), (14)

ϕ2k ≥ 0, ϕ2k−1 ≤ 0, ϕ0 + 2ϕ1 < 0, E(t) < 2ϕ0, ∀t ∈ [0, T ], (15)

where ϕk =
∫ 1
0 ϕ(x)Yk(x)dx for k = 0, 1, 2, .... Then, there exist positive num-

bers α0 and γ0 such that the inverse problem given by (1)-(5) with the param-
eters α < α0, γ > γ0 has a unique solution, where the numbers α0 and γ0 are
determined by the data of the problem.

Proof. For arbitrary positive k(t) ∈ C[0, T ], using that ϕ ∈ C3[0, 1] satisfies
condition (14), by applying the standard procedure of the Fourier series method,
we obtain the solution of the direct problem given by (1)-(4) in the following
form:

u(x, t) = ϕ0X0(x) +

∞
∑

n=1

ϕ2ne
−(2πn)2

∫ t
0 k(s)dsX2n(x)+ (16)

+
∞
∑

n=1

(ϕ2n−1 − 4πnϕ2nt)e
−(2πn)2

∫ t
0 k(s)dsX2n−1(x).
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The series in (16) and its x-partial derivative are uniformly convergent inQT

because their majorizing sums are absolutely convergent by Lemma 1. There-
fore, their sums involved in expressing u(x, t) and ux(x, t) are continuous in QT .
Because the majorizing sum

∑∞
n=1 n

3e−K(2πn)2ε(K = const > 0) is convergent,
the t-partial derivative and the xx-second-order partial derivative series of (16)
are uniformly convergent for t ≥ ε > 0 (ε is an arbitrary positive number).
Thus, we have u(x, t) ∈ C2,1(QT )∩C1,0(QT ), which satisfies conditions (1)-(4)
for arbitrary positive k(t) ∈ C[0, T ].

Applying the over-determination condition (5), we obtain

p(t) = F [p(t)], (17)

where

F [p(t)] =
2ϕ0 +

2
π

∑∞
n=1

1
n
ϕ2ne

−(2πn)2
∫ t
0 k(s)ds − E(t)

−2ϕ0 + 4
∑∞

n=1[4πnϕ2nt− ϕ2n−1]e
−(2πn)2

∫ t
0 k(s)ds

, (18)

k(t) =

[

β

p(t)− α

]
1
γ

.

Denote

α0 =
2ϕ0 − Emax

−2ϕ0 + 4
∑∞

n=1(4πnϕ2nt− ϕ2n−1)
, (19)

α1 =
2ϕ0 +

2
π

∑∞
n=1

1
n
ϕ2n − Emin

−2ϕ0 − 4ϕ1
,

where Emax = maxt∈[0,T ]E(t), Emin = mint∈[0,T ]E(t). Then, from (15), (17),
and (18), it follows that

0 < α0 ≤ p(t) ≤ α1, t ∈ [0, T ]. (20)

Under condition α0 > α1, the inequalities

0 <

[

β

α1 − α

]
1
γ

≤ k(t) ≤
[

β

α0 − α

]
1
γ

(21)

hold.

Let us denote

Cα0,α1 [0, T ] := {p(t) ∈ C[0, T ]|α0 ≤ p(t) ≤ α1,∀t ∈ [0, T ]}.
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It is easy to verify that

F : Cα0,α1 [0, T ] → Cα0,α1 [0, T ].

Let us show that F is a contraction mapping in Cα0,α1 [0, T ] for small α and
large γ. Indeed, ∀p1(t), p2(t) ∈ Cα0,α1 [0, T ], we have

F [p1(t)]− F [p2(t)] =
1

−2ϕ0 + α1,2(t)
× (22)

×
(

2ϕ0 + α0,1(t)− E(t)

−2ϕ0 + α1,1(t)
(α1,2(t)− α1,1(t))− (α0,2(t)− α0,1(t))

)

,

where

α0,m(t) =
2

π

∞
∑

n=1

1

n
ϕ2ne

−(2πn)2
∫ t
0 km(s)ds,

α1,m(t) = 4

∞
∑

n=1

(4πnϕ2nt− ϕ2n−1)e
−(2πn)2

∫ t

0
km(s)ds,

km =

[

β

pm(t)− α

]
1
γ

, m = 1, 2.

Lemma 2 and inequalities (21) imply

∣

∣

∣
e−(2πn)2

∫ t

0
k1(s)ds − e−(2πn)2

∫ t

0
k2(s)ds

∣

∣

∣
≤ (α1 − α)

1
γ

β
1
γ e

‖k1 − k2‖C[0,T ].

Then, we obtain

|α0,2(t)− α0,1(t)| ≤
(α1 − α)

1
γ

β
1
γ e

(

2

π

∞
∑

n=1

1

n
ϕ2n

)

‖k1 − k2‖C[0,T ],

|α1,2 − α1,1| ≤
(α1 − α)

1
γ

β
1
γ e

(

16πT

∞
∑

n=1

nϕ2n − 4

∞
∑

n=1

ϕ2n−1

)

‖k1 − k2‖C[0,T ].

From these inequalities and (22), we obtain

max
0≤t≤T

∣

∣F [p1(t)]− F [p2(t)]
∣

∣ ≤ (α1 − α)
1
γ

β
1
γ

δ‖k1 − k2‖C[0,T ], (23)
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where

δ =
2

πe

(8π2Tα1 + 1)
∑∞

n=1 nϕ2n − 2πα1
∑∞

n=1 ϕ2n−1

−2ϕ0 − 4ϕ1
. (24)

By using the mean value theorem and (21), it is easy to show that

|k1(t)− k2(t)| ≤
β

1
γ

γ(α0 − α)1+
1
γ

|p1(t)− p2(t)|. (25)

Thus, from (23) and (26), we obtain

‖F [p1]− F [p2]‖C[0,T ] ≤
δ

(α0 − α)

1

γ

(

α1 − α

α0 − α

)
1
γ

‖p1 − p2‖C[0,T ].

Let us fix a sufficiently large number γ0 > 0 such that

K :=
δ

(α0 − α)

1

γ0

(

α1 − α

α0 − α

)
1
γ0 ≤ 1. (26)

Thus, in the case γ > γ0, Equation (17) has a unique solution k(t) ∈ Cα0,α1 [0, T ]
by the Banach fixed point theorem.

We therefore obtain a unique positive function k(t), continuous on [0, T ],
which together with the solution of (1)-(4) given by the Fourier series (16), forms
the unique solution of the inverse problem given by (1)-(5). This concludes the
proof of the theorem.

4. Continuous Dependence upon the Data

The following result on continuous dependence on the data of the solution of
(1)-(5) holds.

Theorem 4. Consider the (input) data in the form of Φ = {ϕ,E}, which
satisfy the assumptions of Theorem 1 with

2ϕ0 − Emax ≥ N1 > 0, ϕ0 + 2ϕ1 ≤ −N2 < 0 (27)

and let
‖ϕ‖C3[0,1] ≤ N3, ‖E‖C[0,T ] ≤ N4 (28)

for some positive numbers N1, N2, N3, and N4. Then the solution (k(t), u(x, t))
of the inverse problem (1)-(5) depends continuously upon the data for suffi-
ciently small α and large γ.
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Proof. Let Φ = {ϕ,E} and Φ = {ϕ,E} be two sets of the data, which satisfy
the conditions of Theorem1. Let us denote ‖Φ‖ := ‖ϕ‖C3[0,1] + ‖E‖C[0,T ].

Let (k, u) and (k̄, ū) be solutions of (1)-(5) corresponding to the data Φ and
Φ, respectively. According to (18),

p(t) =
2ϕ0 +

2
π

∑∞
n=1

1
n
ϕ2ne

−(2πn)2
∫ t
0 k(s)ds − E(t)

−2ϕ0 + 4
∑∞

n=1[4πnϕ2nt− ϕ2n−1]e
−(2πn)2

∫ t
0 k(s)ds

,

p̄(t) =
2ϕ0 +

2
π

∑∞
n=1

1
n
ϕ2ne

−(2πn)2
∫ t

0
k̄(s)ds − E(t)

−2ϕ0 + 4
∑∞

n=1[4πnϕ2nt− ϕ2n−1]e
−(2πn)2

∫ t
0 k̄(s)ds

,

k(t) =

[

β

p(t)− α

]
1
γ

, k̄(t) =

[

β

p̄(t)− α

]
1
γ

.

First, let us estimate the difference p − p̄ . Using (12), (13), and (28), we
obtain

∣

∣

∣

∣

∣

∞
∑

n=1

1

n
ϕ2ne

−(2πn)2
∫ t
0 k(s)ds

∣

∣

∣

∣

∣

≤ C‖ϕ‖C3[0,1] ≤ CN3,

∣

∣

∣

∣

∣

∞
∑

n=1

[4πnϕ2nt− ϕ2n−1]e
−(2πn)2

∫ t

0
k(s)ds

∣

∣

∣

∣

∣

≤ 4πC(1 + T )N3,

∣

∣

∣

∣

∣

∞
∑

n=1

1

n
ϕ2ne

−(2πn)2
∫ t
0 k(s)ds −

∞
∑

n=1

1

n
ϕ2ne

−(2πn)2
∫ t
0 k̄(s)ds

∣

∣

∣

∣

∣

≤

≤ M1‖ϕ− ϕ‖C3[0,1] +M2‖k − k‖C[0,T ],

∣

∣

∣

∣

∣

∞
∑

n=1

[4πnϕ2nt− ϕ2n−1]e
−(2πn)2

∫ t
0 k(s)ds−

−
∞
∑

n=1

[4πnϕ2nt− ϕ2n−1]e
−(2πn)2

∫ t

0
k̄(s)ds

∣

∣

∣

∣

∣

≤

≤ M3‖ϕ− ϕ‖C3[0,1] +M4‖k − k‖C[0,T ],

where Mk, k = 1, 4 are some positive constants. By using these inequalities,
simple manipulations yield the estimate

|p(t)− p̄(t)| ≤
M5‖ϕ− ϕ‖C3[0,1] +M6‖k − k‖C[0,T ] +M7‖E − E‖C[0,T ]

4N2
2

, (29)
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where Mk, k = 5, 7 are some constants that are determined by C1, C2 and
Nk, k = 1, 4.

It is known from (24) that, for α < α0,

|k(t)− k̄(t)| ≤ β
1
γ

γ(α0 − α)
1+ 1

γ

|p(t)− p̄(t)|, (30)

with α0 ≥ 2ϕ0−Emax

M8‖ϕ‖C3[0,1]
≥ N1

M8N3
, for some positive constant M8. If α is suffi-

ciently small such that α < N1
M8N3

, using (30) in (29), we obtain

(1−M9)‖p − p̄‖C[0,T ] ≤ M10

(

‖ϕ− ϕ‖C3[0,1] + ‖E − E‖C[0,T ]

)

, (31)

for some positive constants M10 and M9 :=
M6

4N2
2

β
1
γ

γ
(

N1
M8N3

−α
)1+ 1

γ
.

The inequality M9 < 1 holds for sufficiently large γ. This means that

p continuously depends upon the data. Then, the equality k(t) =
[

β
p(t)−α

]
1
γ

implies the continuous dependence of k upon the data. Similarly, we can prove
that u, which is given in (16), depends continuously upon the data. This
concludes the proof of the theorem.

Brief abstract of this work has been published in the Materials of the work-
shop ”Differential operators and modeling of complex systems” (April 7-8, 2017,
Almaty, Kazakhstan) [15].
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