A SAMARSKII-IONKIN PROBLEM FOR TWO-DIMENSIONAL PARABOLIC EQUATION WITH THE CAPUTO FRACTIONAL DIFFERENTIAL OPERATOR

Abdumauvlen S. Berdyshev1, Bakhtiyor J. Kadirkulov2

1Abay Kazakh National Pedagogical University
Almaty, KAZAKHSTAN

2Tashkent State Institute of Oriental Studies
Tashkent, UZBEKISTAN

Abstract: In the work, the authors consider a Samarskii-Ionkin type non-local problem for a fourth-order partial differential equation with the Caputo fractional differential operator in a spatial domain. Applying the method of separation of variables the authors prove the theorem of the existence and uniqueness of the regular solution of these problems.

AMS Subject Classification: 35M10, 35R11, 35R30

Key Words: Samarskii-Ionkin type non-local problem, Caputo fractional differential operator, fractional differential equation, eigenfunction, associated function, completeness, biorthogonal property, Riesz basis

1. Problem Definition

At present time, the theory of boundary value problems for fractional differential equations is an emerging part of the general theory of differential equations. The reason of this is application of this theory to viscoelasticity, dynamic processes, control theory, electrochemistry, and diffusion-related processes. More detailed information can be found in [1-3].
Note, that Samarskii-Ionkin type problems in plane regions were studied in [4-7]. Similar problems (as well as inverse problems) for partial differential equations in three independent variables were considered in [7-9].

Let us consider the equation

\[cD_0^\alpha u + \frac{\partial^4 u}{\partial x^4} + \frac{\partial^4 u}{\partial y^4} = f(x,y,z), \]

where \(cD_0^\alpha u(x,y,t) = I_0^{1-\alpha} \left(\frac{\partial u(x,y,t)}{\partial t} \right) \), \(\alpha \in (0,1] \) is a Caputo fractional differential operator [1, p. 92]. We denote \(\Omega = \Omega_{xy} \times (0,p) \),

\[\Omega_{xy} = \{(x,y) : 0 < x, y < 1\}, \Omega_{zt} = \{(z,t) : 0 < z < 1; 0 < t < p\}. \]

Problem A. Find the function, \(u(x,y,t) \), which:

1) is continuous in domain \(\bar{\Omega} \) together with its derivatives mentioned in the boundary conditions;
2) satisfies equation (1) in the domain \(\Omega \);
3) satisfies the following conditions:

\[u(x,y,0) = \phi(x,y), (x,y) \in \bar{\Omega}_{xy}, \]

\[\frac{\partial^k u}{\partial x^k} |_{x=0} = 0, \quad \frac{\partial^\ell u}{\partial x^\ell} |_{x=0} = \frac{\partial^\ell u}{\partial x^\ell} |_{x=1}, \quad (y,t) \in \bar{\Omega}_{y,t}, \]

\[\frac{\partial^k u}{\partial y^k} |_{y=0} = \frac{\partial^k u}{\partial y^k} |_{y=1} = 0, \quad (x,t) \in \bar{\Omega}_{x,t}, \]

where \(k = 1,3, \ell = 0,2; \ f(x,y,t), \ \phi(x,y) \) are given functions.

2. Investigating Problem A.

As problem is a linear problem we can represent its solutions as the sum of the solutions of the following two problems: the problem for the homogeneous equation

\[cD_0^\alpha u + \frac{\partial^4 u}{\partial x^4} + \frac{\partial^4 u}{\partial y^4} = 0, \]
with conditions (2)-(4) and the problem (1),(3),(4) provided

\[u(x, y, 0) = 0. \]

Let us consider the problem (5),(2) - (4). We try to find a solution of the form

\[u(x, t) = Z(x, y) \cdot T(t). \]

Substituting this expression into equation (5) and boundary conditions (3) and (4), and separating variables, we obtain the following spectral problem:

(6) \[\frac{\partial^4 Z}{\partial x^4} + \frac{\partial^4 Z}{\partial y^4} - \sigma Z = 0, (x, y) \in \Omega_{xy}, \]

(7) \[\frac{\partial^k Z}{\partial x^k} \bigg|_{x=0} = 0, \quad \frac{\partial^\ell Z}{\partial x^\ell} \bigg|_{x=0} = \frac{\partial^\ell Z}{\partial x^\ell} \bigg|_{x=1}, \quad y \in [0, 1], \]

(8) \[\frac{\partial^k Z}{\partial y^k} \bigg|_{y=0} = \frac{\partial^k Z}{\partial y^k} \bigg|_{y=1} = 0, \quad x \in [0, 1], \]

where \(k = 1, 3, \ell = 0, 2; \sigma \) is a spectral parameter.

Let us consider problem (6)-(8). Suppose its solution has the following form

(9) \[Z(x, y) = X(x) \cdot Y(y). \]

Substituting (9) into equation (6) and boundary conditions (7) and (8), we obtain the following problems in unknown functions \(X(x), Y(y) \):

(10) \[X^{IV}(x) - \lambda X(x) = 0, \quad 0 < x < 1, \]

(11) \[X'(0) = X'''(0) = 0, \quad X(0) = X(1), \quad X''(0) = X''(1), \]

(12) \[Y^{IV}(y) - \mu Y(y) = 0, \quad 0 < y < 1, \]

(13) \[Y'(0) = Y'''(0) = Y'(1) = Y'''(1) = 0, \]

where \(\mu = \sigma - \lambda. \)

We know that the problem (12), (13) has eigenvalues and eigenfunctions [10] of the form

(14) \[\mu_k = (k\pi)^4, \quad Y_0(y) = 1, \quad Y_k(y) = \sqrt{2} \cos(k\pi y), \quad k \in N. \]
The problem (10), (11) has been investigated in [12], where the authors found eigenvalues and corresponding to them eigenfunctions and associated functions for this problem, which have the following form

$$\lambda_n = (2n\pi)^4, X_0(x) = 1, X_{2n-1}(x) = \cos 2\pi n x,$$

(15) $$X_{2n}(x) = x \sin 2\pi n x, n \in \mathbb{N}.$$

Therefore, according to (9), the eigenvalues and corresponding to them eigenfunctions of the problem (6)-(8) have the following form

$$\sigma_{nk} = \lambda_n + \mu_k = (2n\pi)^4 + (k\pi)^4, n, k \in \mathbb{N}_0,$$

(16) $$Z_{0k}(x, y) = Y_k(y), Z_{2n-1k}(x, y) = X_{2n-1}(x)Y_k(y),$$

(17) $$Z_{2nk}(x, y) = X_{2n}(x)Y_k(y).$$

Note that the problem (6)(8) is not self-adjoint in terms of the scalar product, $$(\xi, \eta) = \int_{\Omega_{xy}} \xi(x, y)\eta(x, y)dx dy.$$. It is easy to verify that its adjoint problem is the following problem:

(18) $$\frac{\partial^4 W}{\partial x^4} + \frac{\partial^4 W}{\partial y^4} - \sigma W = 0, (x, y) \in \Omega_{xy},$$

$$\left. \frac{\partial^k W}{\partial x^k} \right|_{x=1} = 0,$$

(19) $$\left. \frac{\partial^\ell W}{\partial x^\ell} \right|_{x=0} = \left. \frac{\partial^\ell W}{\partial x^\ell} \right|_{x=1}, y \in [0, 1], k = 0, 2, \ell = 1, 3,$$

(20) $$\left. \frac{\partial^k W}{\partial y^k} \right|_{y=0} = \left. \frac{\partial^k W}{\partial y^k} \right|_{y=1} = 0, x \in [0, 1], k = 1, 3.$$

It is not difficult to show that the problem (18)-(20) has eigenvalues of the form (16), the corresponding eigenfunctions and associated functions have the following form:

$$W_{0k}(x, y) = X^*_0(x)Y_k(y), W_{2n-1k}(x, y) = X^*_{2n-1}(x)Y_k(y),$$

(21) $$W_{2nk}(x, y) = X^*_{2n}(x)Y_k(y),$$
where \(n, k \in N_0 \),

\[
X_0^*(x) = 2(1 - x), \quad X_{2n-1}^*(x) = 4(1 - x) \cos 2\pi nx,
\]

\[
(22) \quad X_{2n}^*(x) = 4 \sin 2\pi nx.
\]

Note that the completeness and basis properties of the systems (15) and (22) were studied in [12], which implies that these systems are complete and form a Riesz basis in \(L_2(0,1) \).

A similar statement holds for the systems (17) and (21).

Lemma 1. The systems of functions (17) and (21) are biorthogonal systems.

Lemma 1 can be proved by direct evaluation of the integrals [13].

Lemma 2. The systems of functions (17) and (21) form a Riesz basis in \(L_2(\Omega_{xy}) \).

The proof of the lemma follows from the basis properties of the systems (15) and (22) and from the following lemma [14]:

Lemma 3. Let for any fixed number \(n = 0, 1, 2, \ldots \), \(\{ \phi^k_n(x) \} \), \(k = 0, 1, 2, \ldots \) be a complete orthonormal system of functions on \([0, \pi] \), and let the system \(\psi_n(y), n = 0, 1, 2, \ldots \) form a Riesz basis in \(L_2[0 \leq y \leq 2\pi] \). Then the system of functions \(u_{nk}(x,y) = \phi^k_n(x)\psi_n(y), n = 0, 1, 2, \ldots, k = 0, 1, 2, \ldots \) forms a Riesz basis in \(L_2([0 \leq x \leq \pi] \times [0 \leq y \leq 2\pi]) \).

3. Existence and Uniqueness of the Solution of Problem A.

Let us consider the problem (5), (2)-(4). Since the systems (17) and (21) form a Riesz basis in \(L_2(\Omega_{xy}) \), the function \(u(x,y,t) \) can be represented in the form of a biorthogonal series

\[
u(x,y,t) = \sum_{k=0}^{\infty} T_{0k}(t) Z_{0k}(x,y) + \]

\[
+ \sum_{n=1}^{\infty} \sum_{k=0}^{\infty} \left(T_{2n-1k}(t) Z_{2n-1k}(x,y) + T_{2nk}(t) Z_{2nk}(x,y) \right),
\]

\[
(23)
\]

where \(T_{0k}(t), T_{2n-1k}(t), T_{2nk}(t), n \in N, k \in N_0 \) are unknown functions.
Using this and taking into account the biorthogonal property of the systems (17) and (21), and the condition (2) from (23) relative to $T_{0k}(t)$, $T_{2n-1k}(t)$, $T_{2nk}(t)$, we obtain the following problems:

\[
\begin{cases}
C D_{0t}^\alpha T_{0k}(t) + \mu_k T_{0k}(t) = 0 \\
T_{0k}(0) = \phi_{0k}
\end{cases},
\]

\[
\begin{cases}
C D_{0t}^\alpha T_{2nk} + \sigma_{nk} T_{2nk}(t) = 0 \\
T_{2nk}(0) = \phi_{2nk}
\end{cases},
\]

\[
\begin{cases}
C D_{0t}^\alpha T_{2n-1k} + \sigma_{nk} T_{2n-1k}(t) = 4 \sqrt{\lambda_n^3} T_{2nk}(t) \\
T_{2n-1k}(0) = \phi_{2n-1k}
\end{cases},
\]

whose solutions are the following functions [1,p.231]:

\[
T_{0k}(t) = \phi_{0k} E_\alpha(-\mu_k t^\alpha), \quad T_{2nk}(t) = \phi_{2nk} E_\alpha(-\sigma_{nk} t^\alpha), \quad T_{2n-1k}(t) = \phi_{2n-1k} E_\alpha(-\sigma_{nk} t^\alpha) +
\]

\[
+ 4 \sqrt{\lambda_n^3} \int_0^t (t - \tau)^{\alpha - 1} E_{\alpha,\alpha}(-\sigma_{nk}(t - \tau)^\alpha) T_{2nk}(\tau) d\tau.
\]

Here

\[
\begin{align*}
\phi_{0k} &= (\phi(x,y), W_{0k}(x,y)), \\
\phi_{2n-1k} &= (\phi(x,y), W_{2n-1k}(x,y)), \quad n \in N, k \in N_0. \\
\phi_{2nk} &= (\phi(x,y), W_{2nk}(x,y)),
\end{align*}
\]

$E_{\alpha,\beta}(z)$ is a Mittag-Leffler type function [1,p.32], which has the form:

\[
E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + \beta)}, \quad E_{\alpha,1}(z) = E_\alpha(z), \quad z, \alpha, \beta \in \mathbb{C},
\]

$Re(\alpha) > 0$.

Substituting the functions found into (23), we obtain the following result: the solution of the problem (5), (2)-(4) can be represented in the following form

\[
u(x,y,t) =
\]

\[
\sum_{k=0}^{\infty} u_{0k}(x,y,t) + \sum_{n=1}^{\infty} \sum_{k=0}^{\infty} (u_{2n-1k}(x,y,t) + u_{2nk}(x,y,t)),
\]
where

\begin{align}
(27) \quad u_{0,k}(x, y, t) &= \phi_{0,k} E_{\alpha}(-\mu_{k} t^{\alpha}) Z_{0,k}(x, y), \\
(28) \quad u_{2n-1,k}(x, y, t) &= (\phi_{2n-1,k} E_{\alpha}(-\sigma_{nk} t^{\alpha}) + 4\lambda_{n}^{3/4} \phi_{2n,k} F_{nk}(t)) Z_{2n-1,k}(t), \\
(29) \quad u_{2n,k}(x, y, t) &= \phi_{2n,k} E_{\alpha}(-\sigma_{nk} t^{\alpha}) Z_{2n,k}(x, y), \\
F_{nk}(t) &= \int_{0}^{t} (t - \tau)^{\alpha-1} E_{\alpha,\alpha}(-\sigma_{nk}(t - \tau)^{\alpha}) E_{\alpha}(-\sigma_{nk} \tau^{\alpha}) d\tau, \\
(30) \quad n &\in \mathbb{N}, \quad k \in \mathbb{N}_{0}.
\end{align}

The following theorem holds.

Theorem 4. Let a function \(\phi(x, y) \) satisfy the following conditions:

\[
\frac{\partial \phi^{5}(x, y)}{\partial x^{4} \partial y} \in C(\Omega_{xy}), \quad \frac{\partial \phi^{5}(x, y)}{\partial x \partial y^{4}} \in C(\Omega_{xy}),
\]

\[
\phi(0, y) = \phi(1, y), \quad \phi_{xx}(0, y) = \phi_{xx}(1, y), \quad \phi_{x}(0, y) = \phi_{xxx}(0, y) = 0,
\]

\[
y \in [0, 1], \quad \phi_{y}(x, 0) = \phi_{y}(x, 1) = \phi_{yyy}(x, 0) = \phi_{yyy}(x, 1) = 0, \quad x \in [0, 1].
\]

Then the solution of the problem (5), (2)-(4) exists, it is unique, and it can be represented as the sum of the series (23).

Proof. Uniqueness of the solution. Let \(u_{1}(x, y, t) \) and \(u_{2}(x, y, t) \) be two solutions of the problem (5), (2)-(4) in the domain \(\Omega \). Then the function \(u(x, y, t) = u_{1}(x, y, t) - u_{2}(x, y, t) \) satisfies equation (2), conditions (3),(4) and \(u(x, y, 0) = 0, \quad (x, y) \in \Omega_{xy} \). Taking (24) into account, we have \((\phi(x, y) = 0) \)

\[
T_{0,k}(t) = 0; \quad T_{2n-1,k}(t) = 0; \quad T_{2n,k}(t) = 0, \quad n \in \mathbb{N}, \quad k \in \mathbb{N}_{0}.
\]

where

\[
T_{0,k}(t) = (u(x, y, t), W_{0,k}(x, y)),
\]

\[
T_{2n-1,k}(t) = (u(x, y, t), W_{2n-1,k}(x, y)),
\]

\[
T_{2n,k}(t) = (u(x, y, t), W_{2n,k}(x, y)),
\]

it implies that the function \(u(x, y, t) \) is orthogonal to the set of functions (21), which is complete and forms a basis in \(L_{2}(\Omega_{xy}) \). Hence, \(u(x, y, t) = 0 \) in \(\Omega \). Since \(u \in C(\Omega) \), we have \(u(x, y, t) = 0 \) in \(\Omega \).
Existence of the solution. By definition, the function \(u(x, y, t) \) satisfies the condition (5), the initial and boundary conditions (2)-(4). First, we are to prove that \(u(x, y, t) \in C(\Omega) \).

(17) and (21) imply that \(|Z_{n k}(x, y)| \leq \sqrt{2}, \ |W_{n k}(x, y)| \leq 4\sqrt{2} \). Using the properties of the Mittag-Leffler function, we have [10]:

\[
E_\alpha(-\sigma_{nk}t^\alpha) \leq M_1, \quad E_{\alpha,\alpha}(-\sigma_{nk}t^\alpha) \leq M_2,
\]

where \(M_1, M_2 \) are positive numbers.

Then (27) and (29) imply that

\[
|u_{0k}(x, y, t)| \leq \sqrt{2}M_1|\phi_{0k}|, \quad |u_{2n_k}(x, y, t)| \leq \sqrt{2}M_1|\phi_{2n_k}|.
\]

Using (31) and taking into account the formula

\[
\frac{1}{\Gamma(\alpha)} \int_0^z (z - t)^{\alpha-1}E_{\alpha,\mu}(\lambda t^\alpha)t^{\mu-1}dt = z^{\mu+\alpha-1}E_{\alpha,\mu+\alpha}(\lambda z^\alpha),
\]

\(\alpha > 0, \ \mu > 0, \)

from [15,p.120] we can easily show that

\[
|F_{nk}(t)| \leq \frac{M_3}{\sigma_{nk}}, \quad M_3 = M_2(1 + M_1), \ t \in [0, 1].
\]

Then using (28) we have

\[
|u_{2n-1_k}(x, y, t)| \leq M_4 (|\phi_{2n-1_k}| + |\phi_{2n_k}|),
\]

\[
M_4 = \max\{\sqrt{2}M_1, 4\sqrt{2}M_3\}.
\]

Therefore, using (26)-(30) we obtain the following estimate:

\[
|u(x, y, t)| \leq \sqrt{2}M_1 \sum_{k=0}^\infty |\phi_{0k}| + M_4 \sum_{n=1}^\infty \sum_{k=0}^\infty |\phi_{2n-1_k}| + (\sqrt{2}M_1 + M_4) \sum_{n=1}^\infty \sum_{k=0}^\infty |\phi_{2n_k}|.
\]

Using (25), taking into account the conditions imposed on \(\phi(x, y) \), and applying Cauchy-Bunyakovskiy and Bessel’s inequalities, we obtain the following estimates:

\[
\sum_{k=1}^\infty |\phi_{0k}| \leq \frac{\sqrt{6}}{9} \|\phi_y\|_{L^2(\Omega_{xy})},
\]
$$\sum_{n=1}^{\infty} |\phi_{2n-1,0}| \leq \frac{\sqrt{3}}{3} \|\phi\|_{L_2(\Omega_{xy})} + \frac{\sqrt{3}}{9} \|\phi_x\|_{L_2(\Omega_{xy})},$$

$$\sum_{n=1}^{\infty} |\phi_{2n,0}| \leq \frac{\sqrt{3}}{3} \|\phi_x\|_{L_2(\Omega_{xy})},$$

$$\sum_{n,k=1}^{\infty} |\phi_{2n-1,k}| \leq \frac{\sqrt{2}}{6} \|\phi_y\|_{L_2(\Omega_{xy})} + \frac{\sqrt{2}}{18} \|\phi_{xy}\|_{L_2(\Omega_{xy})},$$

$$\sum_{n,k=1}^{\infty} |\phi_{2n,k}| \leq \frac{\sqrt{2}}{6} \|\phi_{xy}\|_{L_2(\Omega_{xy})}. \tag{31}$$

Hence, the series

$$\sum_{k=0}^{\infty} |\phi_{0,k}| + \sum_{n=1}^{\infty} \sum_{k=0}^{\infty} (|\phi_{2n-1,k}| + |\phi_{2n,k}|),$$

majorizing the functional series (26) converges. Then, according to Weyrstrasse’s theorem [16,p.20], the series (26) converges absolutely and evenly in the domain Ω, and its sum is a continuous function in this domain.

Now we will show that $\frac{\partial^3 u}{\partial x^3} \in C(\Omega)$. (28) and (29) imply that

$$\frac{\partial^3 u_{2n-1,0}}{\partial x^3} = \lambda_n^{3/4} \left(\phi_{2n-1,0} E_{\alpha}(-\lambda_n t^\alpha) + 4\lambda_n^{3/4} \phi_{2n,0} F_{n0}(t) \right) \sin 2\pi nx,$$

$$\frac{\partial^4 u_{2n-1,k}}{\partial x^4} = \sqrt{2} \lambda_n^{3/4} \left(\phi_{2n-1,k} E_{\alpha}(-\sigma_{nk} t^\alpha) + 4\lambda_n^{3/4} \phi_{2n,k} F_{nk}(t) \right) \sin 2\pi nx \cos \pi ny,$$

$$\frac{\partial^3 u_{2n,0}}{\partial x^3} = \phi_{2n,0} E_{\alpha}(-\lambda_n t^\alpha) \left(-3\lambda_n^{1/2} \sin 2\pi nx - \lambda_n^{3/4} \cos 2\pi nx \right),$$

$$\frac{\partial^3 u_{2n,k}}{\partial x^3} = \sqrt{2} \phi_{2n,k} E_{\alpha}(-\sigma_{nk} t^\alpha) \left(-3\sqrt{\lambda_n} \sin 2\pi nx - \lambda_n^{3/4} \cos 2\pi nx \right) \cos k\pi y.$$
Then, taking into account the conditions imposed on the function \(\phi(x, y) \), similar to the estimates (31), we can easily obtain the following estimates:

\[
\sum_{n=1}^{\infty} \left| \frac{\partial^3 u_{2n\,0}}{\partial x^3} \right| \leq \frac{4\sqrt{3}M_1}{3} \left\| \frac{\partial^4 \phi}{\partial x^4} \right\|_{L_2(\Omega_{xy})},
\]

\[
\sum_{n=1}^{\infty} \left| \frac{\partial^3 u_{2n\,k}}{\partial x^3} \right| \leq \frac{4M_1}{3} \left\| \frac{\partial^5 \phi}{\partial x^4 \partial y} \right\|_{L_2(\Omega_{xy})},
\]

\[
\sum_{n=1}^{\infty} \left| \frac{\partial^3 u_{2n-1\,0}}{\partial x^3} \right| \leq \frac{5\sqrt{3}M_1 + 2\sqrt{5}M_3}{15} \left\| \frac{\partial^4 \phi}{\partial x^4} \right\|_{L_2(\Omega_{xy})} + \frac{4\sqrt{3}M_1}{3} \left\| \frac{\partial^3 \phi}{\partial x^3} \right\|_{L_2(\Omega_{xy})},
\]

\[
\sum_{n=1}^{\infty} \left| \frac{\partial^3 u_{2n-1\,k}}{\partial x^3} \right| \leq \frac{15M_1 + 4\sqrt{15}M_3}{90} \left\| \frac{\partial^5 \phi}{\partial x^4 \partial y} \right\|_{L_2(\Omega_{xy})} + \frac{4M_1}{3} \left\| \frac{\partial^4 \phi}{\partial x^3 \partial y} \right\|_{L_2(\Omega_{xy})}.
\]

These and (26) imply the result. The proof of \(C D_{0t}^\alpha u(x, t) \in C(\Omega), \frac{\partial^4 u}{\partial y^4} \in C(\Omega), \frac{\partial^3 u}{\partial y^3} \in C(\Omega) \) is similar.

The theorem follows.

Note. The solution of Problem A can be represented as a sum of the series (25), where the functions \(T_{0\,k}(t), T_{2n-1\,k}(t), T_{2n\,k}(t) \) have the form

\[
T_{0\,k}(t) = \phi_{0\,k}E_\alpha(-\mu_k t^\alpha) + \int_0^t (t - \tau)^{\alpha - 1}E_{\alpha, \alpha}(-\sigma_{0\,k}(t - \tau)^\alpha)f_{0\,k}(\tau)d\tau,
\]

\[
T_{2n\,k}(t) = \phi_{2n\,k}E_\alpha(-\sigma_{n\,k} t^\alpha) + \int_0^t (t - \tau)^{\alpha - 1}E_{\alpha, \alpha}(-\sigma_{n\,k}(t - \tau)^\alpha)f_{2n\,k}(\tau)d\tau,
\]

\[
T_{2n-1\,k}(t) = \phi_{2n-1\,k}E_\alpha(-\sigma_{n-1\,k} t^\alpha) + \int_0^t (t - \tau)^{\alpha - 1}E_{\alpha, \alpha}(-\sigma_{n-1\,k}(t - \tau)^\alpha)

(4 \sqrt{\lambda_n} \sum_{n=1}^{\infty} T_{2n\,k}(\tau) + f_{2n\,k}(\tau)) d\tau,
\]

where \(f_{0\,k}(t) = (f(x, y, t), W_{0\,k}(x, y)); f_{2n\,k}(t) = (f(x, y, t), W_{2n\,k}(x, y)), f_{2n-1\,k}(t) = (f(x, y, t), W_{2n-1\,k}(x, y)) \); and the coefficients \(\phi_{0\,k}, \phi_{2n-1\,k}, \phi_{2n\,k} \) are determined by using the formula (25).
Brief abstract of this work has been published in the Materials of the workshop "Differential operators and modeling of complex systems" (April 7-8, 2017, Almaty, Kazakhstan) [17].

Acknowledgements

This work is financially supported by the grant of Ministry of Education and Science of the Republic of Kazakhstan (grant number 3293/GF4).

References

