IJPAM: Volume 113, No. 5 (2017)
Title
AN INFINITE SERVER QUEUEING MODEL WITH VARYINGARRIVAL AND DEPARTURES RATES FOR
HEALTHCARE SYSTEM
Authors
Soma Dhar



Gauhati University
Guwahati, Assam-14, INDIA

in Science and Technology
Guwahati, Assam-35, INDIA
Abstract
In this paper, we consider the infinite server queues with time-varying arrival and departure pattern when the parameters are varying with time. Here we give an extension of our previous work on infinite server queueing model considering inpatient department to study the improvement in the varying service rate with the help of probability generating function techniques which results in difference differential equations. With an infinite number of servers providing service to the system, aim is to find an optimal solution to the distribution of service time over a given period. Simulation techniques are used to demonstrate the effectiveness of this model.History
Received: November 28, 2016
Revised: February 4, 2017
Published: April 1, 2017
AMS Classification, Key Words
AMS Subject Classification: 90B22, 05A15
Key Words and Phrases: transient solution, infinite server queue,
, generating functions, inpatient department
Download Section
Download paper from here.You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.
Bibliography
- 1
- L. M. Abol'nikov. A nonstationary queueing problem for a system with an infinite number of channels for a group arrival of requests. Problemy Peredachi Informatsii, 4(3) (1968) 99-102 .
- 2
- T. P. Bagchi and James G. C. Templeton.Numerical Methods in Markov Chains and Bulk Queues. Springer Berlin Heidelberg, (1972) doi: https://doi.org/10.1007/978-3-642-80712-1.
- 3
- M. Baykal-Gursoy and W. Xiao. Stochastic decomposition in
queues with markov modulated service rates. Queueing Systems, 48(1-2) (2004) 75-88.
- 4
- O. J. Boxma and I.A. Kurkova. The M / G /1 queue with two service speeds. Adv. in Appl. Probab. 33, 2 (2001) 520-540, doi: https://doi.org/10.1239/aap/999188327.
- 5
- A. B. Clarke. A Waiting Line Process of Markov Type. Ann. Math. Statist. 27, 2 (1956) 452-459. doi: https://doi.org/10.1214/aoms/1177728268.
- 6
- T. Collings and C. Stoneman. The
Queue with Varying Arrival and Departure Rates, Oper. Res. 24, 4 (1976) 760-773, doi: https://doi.org/10.1287/opre.24.4.760.
- 7
- K. K. Das, S. Dhar and L. B Mahanta. Comparative study of waiting and service costs of single and multiple server system: A case study on an outpatient department.International Journal of Scientific Footprints,3(2) (2014) 18-30, doi: https://doi.org/10.22576/ijsf.
- 8
- A. El-Sherbiny, H. Zamani, N. Ismail, G. Mokaddis, M. Ghazal, A. El-Desokey, M. S. El-Sherbeny, E. Al-Esayeh, and O. Olotu. Transient solution to an infinite server queue with varying arrival and departure rate. Journal of Mathematics and Statistics, 6(1) (2010) 1-3, doi: https://doi.org/10.3844/jmssp.2010.1.3.
- 9
- Z. Feldman, A. Mandelbaum, W. A. Massey, and W. Whitt. Staffing of time-varying queues to achieve time-stable performance. Management Science,54(2) (2008) 324-338, doi: https://doi.org/10.1287/mnsc.1070.0821.
- 10
- L. V. Green, P. J Kolesar and W. Whitt. Coping with Time-Varying Demand When Setting Staffing Requirements for a Service System. Production and Operations Management, 16 (2007) 13–39, doi: https://doi.org/10.1111/j.1937-5956.2007.tb00164.x.
- 11
- R. C. Hampshire and W. A. Massey. Dynamic optimization with applications to dynamic rate queues. TUTORIALS in Operations Research, INFORMS Society, (2010) 210-247. doi: https://doi.org/10.1287/educ.1100.0077
- 12
- E.L. Leese and D.W. Boyd. Numerical methods of determining the transient behaviour of queues with variable arrival rates.J. Can. Oper. Res. Soc, 4 (1966) 1-13.
- 13
- L. B. Mahanta, K. K. Das, and S. Dhar. A queuing model for dealing with patients with severe disease. Electronic Journal of Applied Statistical Analysis, 9(2) (2016) 362-370, doi: https://doi.org/10.1285/i20705948v9n2p362.
- 14
- A. Mandelbaum, W. A. Massey, and M. I. Reiman. Strong approximations for markovian service networks. Queueing Systems, 30(1-2) (1998) 149-201, doi: https://doi.org/10.1023/A:1019112920622
- 15
- W. A. Massey. The analysis of queues with time-varying rates for telecommunication models. Telecommunication Systems, 21 (2002), 173-204, doi: https://doi.org/10.1023/A:1020990313587.
- 16
- D.V. Gupta Mohit and P.K Sharma. Transient solution of
queue with varying arrival and service rate. VSRD Technical & Non-Technical Journal (2010) 119-128.
- 17
- C. Newell. Applications of queueing theory, 4. Springer Science & Business Media, (2013), doi: https://doi.org/10.1007/978-94-009-5970-5.
- 18
- P.R. Parthasarathy and M. Sharafali. Transient solution to the many-server poisson queue: a simple approach. Journal of Applied Probability (1989) 58-594, doi: https://doi.org/10.2307/3214415.
- 19
- T. L. Saaty. Elements of queueing theory, 423, McGraw-Hill New York, (1961).
- 20
- K. Satoh, T. Tonda, and S. Izumi. Logistic regression model for survival time analysis using time-varying coefficients. American Journal of Mathematical and Management Sciences, 35(4) (2016) 353-360, doi: https://doi.org/10.1080/01966324.2016.1215945.
- 21
- K. Satoh and H. Yanagihara. Estimation of varying coefficients for a growth curve model. American Journal of Mathematical and Management Sciences, 30 (3-4) (2010) 243-256. doi: https://doi.org/10.1080/01966324.2010.10737787.
- 22
- D. N. Shanbhag. On infinite server queues with batch arrivals. Journal of Applied Probability, 3(1) (1966) 274-279, doi: https://doi.org/10.2307/3212053 .
- 23
- Y. P. Zhou, N. Gans, et al. A single-server queue with markov modulated service times. submitted for publication, (1999).
How to Cite?
DOI: 10.12732/ijpam.v113i5.6 How to cite this paper?Source: International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 113
Issue: 5
Pages: 583 - 593
Google Scholar; DOI (International DOI Foundation); WorldCAT.
This work is licensed under the Creative Commons Attribution International License (CC BY).