IJPAM: Volume 114, No. 1 (2017)

Title

FIXED POINT THEOREMS FOR SOFT
$\alpha-\psi$ CONTRACTIVE TYPE MAPPING IN
SOFT METRIC SPACES

Authors

V.M.L. Hima Bindu$^1$, G.N.V. Kishore$^2$
$^{1,2}$Department of Mathematics
K.L. University
Vaddeswaram, Guntur, 522 502, Andhra Pradesh, INDIA

Abstract

In this paper, we introduce the notions of soft $\alpha-\psi$-contractive mappings and cyclic soft $(\alpha,\beta)-\psi$-contractive mappings, and the purpose of this paper to prove some fixed point theorems in soft metric space.

History

Received: October 28, 2016
Revised: January 28, 2017
Published: April 21, 2017

AMS Classification, Key Words

AMS Subject Classification: 54H25, 47H10, 54E50
Key Words and Phrases: soft metric, soft $\alpha-\psi$ contraction,cyclic soft $(\alpha,\beta)-\psi$-contraction

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
D. Molodtsov, Soft set-theory-first results, Comput. Math. Appl. 37 4-5 (1999), 19-31.

2
P.K. Maji, A.R. Roy, R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 8-9 (2002), 1077-1083.

3
S. Das and S.K. Samanta, Soft metric, Annals of Fuzzy Mathematics and Informatics, 6 1 (2013), 77-94.

4
S. Das and S.K. Samanta, Soft Real Sets, Soft Real Numbers and Their Properties, Journal of Fuzzy Mathematics, 20 3 (2012), 551-576.

5
P. Majumdar, S.K. Samanta, On soft mappings, Comput. Math. Appl., 60 9 (2010), 2666-2672.

6
M. Shabir and M. Naz, On soft topological spaces, Comput. Math. Appl., 61 7 (2011), 1786-1799.

7
M. Abbas, G. Murtaza, S. Romaguera, Soft contraction theorem, J. Nonlinear Convex Anal. 16 (2015), 423-435.

8
C.M. Chen, I.J. Lin, Fixed point theory of the soft Meir-Keeler type contractive mappings on a complete soft metric space, Fixed Point Theory Appl. (2015), 184.

9
S. Alizadeh, F. Moradlou, P. Salimi , Some fixed point results for $(\alpha,\beta)-(\psi,\phi)$-contractive mappings, Filomat 28 3 (2014), 635-647.

10
M.I. Yazar, C.Gunduz, S. Bayramovc, Fixed Point Theorems of Soft Contractive Mappings, Filomat 30 2 (2016), 269-279, doi: https://doi.org/10.2298/FIL1602269Y.

11
P.K. Maji, R. Biswas, A.R. Roy, Soft set theory, Comput. Math. Appl. 45 (2003), 555-562.

12
B. Samet, C. Vetro, and P. Vetro, Fixed Point Theorems for $\alpha-\psi$ -contractive Type Mappings, Nonlinear Analysis: Theory, Methods and Applications, 75 4, (2012), 2154-2165.

How to Cite?

DOI: 10.12732/ijpam.v114i1.4 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 114
Issue: 1
Pages: 41 - 53


$\alpha-\psi$ CONTRACTIVE TYPE MAPPING IN SOFT METRIC SPACES%22&as_occt=any&as_epq=&as_oq=&as_eq=&as_publication=&as_ylo=&as_yhi=&as_sdtAAP=1&as_sdtp=1" title="Click to search Google Scholar for this entry" rel="nofollow">Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).