LEFT FILTERS IN TERNARY SEMIGROUPS

G. Jayalalitha1, Y. Sarala2, B. Srinivasa Kumar1, D. Madhusudhana Rao1

1Department of Mathematics
K.L. University
Guntur Dt., A.P., INDIA
2Department of Mathematics
National Institute of Technology
A.P., INDIA

Abstract: In this paper we consider the left ternary filters in a ternary semigroup. We analyze some relations between the left ternary filters and completely prime ideals of a ternary semigroup T.

AMS Subject Classification: 06F05, 20N99
Key Words: left ternary filter, completely prime, c-system, d-system

1. Introduction

Lee S.K. and Lee S.S. in [7], introduced the notion of a left(right) filters in a po-semigroup and gave a characterization of the left(right) filters of T in terms of the right(left) prime ideals. Kwon Y.I. [4] and Kostaq H. in [5], characterized filters in ordered semigroups. In [10] Subramanyeswara Rao etc defined some relations between the filters of partially ordered Γ-semigroups S. In this paper, we analyze some relations between the left ternary filters and completely prime ideals of a ternary semigroup.
Let \(x, y, z\) \(\in F\). It is a contradiction. Thus \(F\) is completely prime. Therefore \(xyz\) is a contradiction. Thus possible \(\iff\) ternaryfilter completely primeideal provided \(x, y, z\) \(\in a\ \alpha\). Let \(a, b, c\ \in \alpha\). Define a relation on \(T\) as \(I_T \cup \{(x, y, z); (x, z, y)\}\). Then \(T\) is a ternarysemigroup and \(\{x, y, z\}; \{y\}\) are all ternaryfilters of \(T\).

Theorem 2.3. The nonempty intersection of two left ternaryfilters of a ternarysemigroup \(T\) is also a left ternaryfilter of \(T\).

Proof. Let \(A, B\) be two left ternaryfilters of \(T\). Let \(a, b, c \in T, \ ABC \in A \cap B.\) \(a, b, c \in T; \ ABC \in A; \) \(A\) is a left ternaryfilter of \(T \Rightarrow a \in A.\) \(a, b, c \in T; \ ABC \in B; \) \(B\) is a left ternaryfilter of \(T \Rightarrow a \in B.\) \(a \in A; \ a \in B \Rightarrow a \in A \cap B.\) \(a, b, c \in T, \ ABC \in A \cap B \Rightarrow a \in A \cap B.\) Therefore \(A \cap B\) is a left ternaryfilter of \(T\).

Theorem 2.4. The nonempty intersection of a family of left ternaryfilters of a ternarysemigroup \(T\) is also a left ternaryfilter.

Proof. Let \(\{F_{\alpha}\}_{\alpha \in \Delta}\) be a family of left ternaryfilters of \(T\) and let \(F = \bigcap_{\alpha \in \Delta} F_{\alpha}.\) Let \(a, b, c \in T, \ ABC \in F.\) Now \(ABC \in F \Rightarrow \ ABC \in \bigcap_{\alpha \in \Delta} F_{\alpha} \Rightarrow ABC \in F_{\alpha}\) for each \(\alpha \in \Delta.\) \(\ ABC \in F_{\alpha}; \ F_{\alpha}\) is a left ternaryfilter of \(T \Rightarrow a \in F_{\alpha}\) for each \(\alpha \in \Delta \Rightarrow a \in \bigcap_{\alpha \in \Delta} F_{\alpha} \Rightarrow a \in F.\) Therefore \(F\) is a left ternaryfilter of \(T.\)

Definition 2.5. [9] An ideal \(A\) of a ternarysemigroup \(T\) is known as a completely primeideal provided \(x, y, z \in T; \ xyz \in A \Rightarrow\) either \(x \in A\) or \(y \in A\) or \(z \in A.\)

Theorem 2.6. A nonempty subset \(F\) of a ternary subsemigroup \(T\) is a left ternaryfilter \(\Leftrightarrow T \setminus F\) is a completely prime rightidealeal of \(T\) or empty.

Proof. Suppose that \(T \setminus F \neq \emptyset.\) Let \(x \in T \setminus F;\) \(y, z \in T.\) Suppose if possible \(xyz \notin T \setminus F.\) Then \(xyz \in F.\) Since \(F\) is a left ternaryfilter, \(x \in F.\) It is a contradiction. Thus \(xyz \in T \setminus F\) and so \((T \setminus F)TT \subseteq T \setminus F.\) Therefore \(T \setminus F\) is a right ternaryideal. Now shall we prove that \(T \setminus F\) is a completelyprime. Let \(x, y, z \in T\) and \(xyz \in T \setminus F.\) Suppose if possible \(x \notin T \setminus F;\) \(y \notin T \setminus F\) and \(z \notin T \setminus F.\) Then \(x, y, z \in F.\) Since \(F\) is a ternary subsemigroup of \(T, \ xyz \in F.\) It is a contradiction. Thus \(x \in T \setminus F\) or \(y \in T \setminus F\) or \(z \in T \setminus F.\) Hence \(T \setminus F\) is completely prime. Therefore \(T \setminus F\) is a completely prime rightidealeal of \(T.\)
Contrary assume that $T \setminus F$ is a completely prime right ternary ideal of T or empty. If $T \setminus F = \emptyset$ then $F = T$. Thus F is a left ternary filter of T. Suppose that $T \setminus F$ is a completely prime right ternary ideal of T. Let $x, y, z \in F$. Suppose if possible $xyz \notin F$. Then $xyz \in T \setminus F$. Since $T \setminus F$ is a completely prime, $x \in T \setminus F$ or $y \in T \setminus F$ or $z \in T \setminus F$. It is a contradiction. Thus $xyz \in F$ and hence F is a ternary subsemigroup of T. Let $x, y, z \in T$; $xyz \in F$. If $x \notin F$ then $x \in T \setminus F$. Since $T \setminus F$ is a completely prime right ideal of T, $xyz \in (T \setminus F)TT \subseteq T \setminus F$. It is a contradiction. Thus $x \notin F$. Therefore F is a left ternary filter of T.

Definition 2.7. [10] A ternary ideal P of a ternary semigroup T is known as prime ideal provided A, B and C are ideals of T and $ABC \subseteq P \Rightarrow$ either $A \subseteq P$ or $B \subseteq P$ or $C \subseteq P$.

Corollary 2.8. Let T be a ternary semigroup and F is a left ternary filter of T. Then $T \setminus F$ is a prime right ternary ideal of T or empty.

Proof. Since F is a left ternary filter; by theorem 2.6, $T \setminus F$ is a completely prime right ternary ideal of T or empty.

We now introduce the notion of a c-system of a ternary semigroup.

Definition 2.9. Let T be a ternary semigroup. A non empty subset A of T is called a c-system of T if for each $a, b \in A$ and $c \in T$ there exist an element $x \in A$ such that $x = abc$.

A non empty subset A of a ternary semigroup T is a c-system of T if for each $a, b \in A$ there exist an element $c \in A$ such that $c \in aTb$.

Theorem 2.10. Every ternary subsemigroup of a ternary semigroup T is a c-system.

Proof. Let S be a ternary subsemigroup of T and $a, b, c \in T$. Since S is a ternary subsemigroup of T, $abc \in T$. Let $x = abc$. Therefore there exist an element $x \in S$ such that $x = abc$. Therefore S is a c-system.

Theorem 2.11. A ternary ideal P of a ternary semigroup T. If $T \setminus P$ is either a c-system of T or empty then P is completely prime.

Proof. Assume that $T \setminus P$ is a c-system of T or $T \setminus P$ is empty. If $T \setminus P$ is empty then $P = T$ and hence P is a completely prime. Suppose that $T \setminus P$ is a c-system of T. Let $a, b, c \in T$ and $abc \in P$. Suppose if possible $a \notin P$; $b \notin P$ and $c \notin P$. Then $a \in T \setminus P$; $b \in T \setminus P$ and $c \in T \setminus P$.

Since $T \setminus P$ is a c-system, there exists $x \in T \setminus P$ such that $x = abc$. $x = abc \in P$. Since P is a completely prime ideal of T, we have $x \in P$. It is a contradiction. Hence either $a \in P$ or $b \in P$ or $c \in P$. Therefore P is a completely prime ternary ideal of T.

57
Definition 2.12. A ternary ideal A of a ternary semigroup T is called a completely semiprime ideal provided $x^3 \in A; x \in T \Rightarrow x \in A$.

Theorem 2.13. Every completely prime ideal of a ternary semigroup T is a completely semiprime ideal of T.

Proof. Let A be a completely prime ideal of a ternary semigroup T. Suppose that $x \in T$ and $x^3 \in A$. Since A is a completely prime ideal of T, $x \in A$. Therefore T is a completely semiprime ideal.

Theorem 2.14. A ternary ideal P of a ternary semigroup T. If $T \setminus P$ is either a c-system of T or empty then P is a completely semiprime ideal.

Proof. By Theorem 2.11; P is completely prime. By Theorem 2.13; P is a completely semiprime ideal.

We now introduce the notion of a d-system of a ternary semigroup.

Definition 2.15. Let T be a ternary semigroup. A non empty subset A of T is called a d-system of T if for each $a \in A$ and $b \in T$, there exist an element $x \in A$ such that $x = aba$.

A non empty subset A of a ternary semigroup T is a d-system of $T \iff$ for each $a \in A$ there exist $x \in A$ such that $x \in aTa$.

Theorem 2.16. An ideal P of a ternary semigroup T is a completely semiprime $\iff T \setminus P$ is a d-system of T or empty.

Proof. Assume that P is completely semiprime ideal of T and $T \setminus P \neq \emptyset$. Let $a \in T \setminus P$. Then $a \notin P$. Suppose if possible $x \notin aTa$ for every $x \in T \setminus P$ and $aTa \subseteq P$. $aTa \subseteq P$, Since P is a completely semiprime, $a \in P$. It is a contradiction. Therefore there exist an element $x \in T \setminus P$ such that $x = aba; b \in T$. Therefore $T \setminus P$ is a d-system of T.

Contrary suppose that $T \setminus P$ is a d-system of T or $T \setminus P$ is empty. If $T \setminus P$ is empty then $P = T$ and hence P is completely semiprime. Suppose that $T \setminus P$ is a d-system of T. Let $a \in T$ and $a^3 \in P$. Suppose if possible $a \notin P$. Then $a \in T \setminus P$. Since $T \setminus P$ is a d-system, there exists an element $x \in T \setminus P$ such that $x = aba$ for $b \in T$. $x = aba \in aTa \subseteq P$. Therefore $x \in P$. It is a contradiction. Hence $a \in P$. Thus P is a completely semiprime ideal of T.

We now introduce the notion of a left ternary filter of T generated by A.

Definition 2.17. Let T be a ternary semigroup and A be a non empty subset of T. The smallest leftfilter of $T \subseteq A$ is known as a left ternary filter of T generated by A and is symbolized by $F_l(A)$.

Theorem 2.18. The left ternary filter of a ternary semigroup T generated by a non empty subset A of T is the intersection of all left ternary filters of $T \subseteq A$.

Proof. Let Δ be the set of all left ternary filter of $T \subseteq A$. Since T itself is a
left ternary filter of \(T \subseteq A, T \in \Delta \). So \(\Delta \neq \phi \).

Let \(F^* = \bigcap_{\alpha \in \Delta} F \). Since \(A \subseteq F \) for all \(F \in \Delta \), \(A \subseteq F^* \). So \(F^* \neq \phi \). By theorem 2.3, \(F^* \) is a left ternary filter of \(T \subseteq A \). Clearly \(A \subseteq K \) and \(K \) is a left ternary filter of \(T \). Therefore \(K \in \Delta \Rightarrow F^* \subseteq K \). Therefore \(F^* \) is the smallest left ternary filter of \(T \subseteq A \) and hence \(F^* \) is the left ternary filter of \(T \) generated by \(A \).

Definition 2.19. A left ternary filter \(F \) of a ternary semigroup \(T \) is known as a principal left filter provided \(F \) is a left ternary filter generated by \(\{a\} \) for some \(a \in T \). It is symbolized by \(F_l(a) \).

Example 2.20. As in the example 2.2, \(T \) is a ternary semigroup and \(F_l(a) = \{a, b, c\} \), \(F_l(b) = \{b\} \) and \(F_l(c) = \{c\} \) are all the principal left ternary filters of the ternary semigroup \(T \).

Corollary 2.21. Let \(T \) be a ternary semigroup and \(a \in T \). Then \(F_l(a) \) is the least left ternary filter of \(T \) containing \(\{a\} \).

For every \(a \in T \), the intersection of all left ternary filters containing \(\{a\} \) is again a left ternary filter and thus the least left ternary filter containing \(\{a\} \).

References

