IJPAM: Volume 114, No. 3 (2017)

Title

ON $\alpha^{m}$-SYMMETRIC SPACES

Authors

K. Sivakumar$^1$, R. Parimelazhagan$^2$
$^1$Department of Mathematics
Sathyabama University
Chennai - 119, Tamilnadu, INDIA
$^2$Department of Mathematics
RVS Technical Campus
Coimbatore - 641 402, Tamilnadu, INDIA

Abstract

In this paper, we introduce the space called $\alpha^{m}$-symmetric by using $\alpha^{m}$-closure of $\alpha^{m}$-closed sets in topological spaces and study some of their properties.

History

Received: February 10, 2017
Revised: April 10, 2017
Published: May 23, 2017

AMS Classification, Key Words

AMS Subject Classification: 57N40
Key Words and Phrases: $\alpha^{m}$-symmetric space

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
A. Wilansky, Between $T_{1}$ and $T_{2}$, Amer.Math. Monthly. 74 (1967), 261-266.

2
C.E. Aull, Sequences in topological spaces, Comm. Math. (1968), 329-36.

3
S.P. Arya and M.P. Bhamini, A note on semi-$US$ spaces, Ranchi Uni. Math. J. Vol. 13 (1982), 60-68.

4
P. E. Long and L. L. Herington, Basic Properties of Regular Closed Functions, Rend. Cir. Mat. Palermo, 27(1978), 20-28.

5
M.K. Singal, A.R. Singal: Almost-continuous mappings. Yokohama Math. J. 16 (1968), 63-73.

6
Njastad. O, On some classes of nearly open sets, Pacific J. Math., , 15 (1965), 961-970.

7
Levine. N, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19 (1970), 89 - 96.

8
Levine. N, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36 - 41.

9
K. Balachandran, P. Sundran and H. Maki, On Generalized Continuous Maps In Topological Spaces. Mem. Fac.Sci. Kochi Univ., ser. A. math.,12, 5-13(1991).

10
R. Devi, H. Maki and K. Balachandran, Semi-Generalised Closed Maps And Generalized Semi-Closed Maps, Mem. Fac. Sci. Kochi Univ. Ser. A. math., 14, 41-54(1993).

11
I. Arockiarani, Studies on Generalizations of Generalized Closed Sets and Maps in Topological Spaces, Ph. D Thesis, Bharathiar University, Coimbatore, (1997).

12
A. S.Mashhour, I.A.Hasanein, S.N.El-Deeb: $\alpha$-continuous and $\alpha$-open mappings. ActaMath. Hung. 41 (1983), 213-218.

13
Mashhour. A. S, Abd EI-Monsef. M. E. and EI-Deeb. S. N., On Precontinuous and weak pre-continuous mapping, Proc. Math., Phys. Soc. Egypt, 53 (1982), 47 - 53.

14
Milby Mathew and R. Parimelazhagan, $\alpha^{m}$-Closed Sets in Topological Spaces, International Journal of Mathematical Analysis Vol. 8, 2014, no. 47, 2325 - 2329.

15
S.R.Malghan, Generalized closed maps, J. Karnataka Univ. Sci., 27(1982), 82-88.

16
Andrijevic. D, Semi-preopen sets, Mat. Vesink, 38 (1986), 24 - 32.

17
Milby Mathew and R. Parimelazhagan, $\alpha^{m}$-Continuous Maps in Topological Spaces. (submitted)

18
R. Parimelazhagan and Milby Mathew, On $I_{\alpha^{m}}(A)$, $C_{\alpha^{m}}(A)$ and $\alpha^{m}$-open and closed Functions (submitted).

19
R. Parimelazhagan and Milby Mathew, On $(\alpha^{m},\ D)$-sets in Topological Spaces (submitted).

20
R. Parimelazhagan and Milby Mathew, On $T_{i}\widetilde{^{\alpha^{m}}} _ {i=0, 1, 2}$-Spaces in Topological Spaces (submitted).

How to Cite?

DOI: 10.12732/ijpam.v114i3.14 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 114
Issue: 3
Pages: 593 - 601


$\alpha^{m}$-SYMMETRIC SPACES%22&as_occt=any&as_epq=&as_oq=&as_eq=&as_publication=&as_ylo=&as_yhi=&as_sdtAAP=1&as_sdtp=1" title="Click to search Google Scholar for this entry" rel="nofollow">Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).