IJPAM: Volume 114, No. 3 (2017)

Title

ON COVERING PROPERTIES IN TERMS OF
GENERALIZED FORM OF PREOPEN SETS

Authors

M.K. Ghosh
Department of Mathematics
Kalyani Mahavidyalaya
Kalyani, 741235, Nadia, West Bengal, INDIA

Abstract

In this paper, we introduce the concept of a new class of sets viz. $\hat{\gamma}$-preopen sets using an operation $\gamma$ to preopen sets. This class of sets contains the class of preopen sets. Such sets are used to introduce and study some separation as well as covering axioms.

History

Received: April 15, 2017
Revised: May 11, 2017
Published: May 23, 2017

AMS Classification, Key Words

AMS Subject Classification: 54A05, 54A10, 54C10, 54D20
Key Words and Phrases: preopen, $\hat{\gamma}$-preopen, $\hat{\gamma}$-strongly compact, $\hat{\gamma}$-p-closed

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
Abd El-Aziz Ahmed Abo-Khadra, On generalized forms of compactness, Master's Thesis, Faculty of Science, Tanta University, Egypt, (1989).

2
A. V. Arhangelski and P. J. Collins, On submaximal spaces, Topology Appl., 64 (3), (1995), 219-241.

3
R. H. Atia, S. N. El-Deeb, and I. A. Hasanein, A note on strong compactness and S-closedness, Matematicki Vesnik, 6 No. 1 (1982), 23–28.

4
B. M. Uzzal Afsan and C. K. Basu, Some new class of spaces and associated spaces, Jour. of Adv. Research in Pure Math. 4 No. 2 (2012), 59-75.

5
C. K. Basu, B. M. Uzzal Afsan and M. K. Ghosh, A class of functions and separation axioms with respect to an operation, Hacet. J. Math. Stat., 38, No. 2 (2009), 103-118.

6
S. N. El-Deeb, I. A. Hasanein, A. S. Mashhoura and T. Noiri, On p-regular spaces, Bull. Math. de la Soc. Sc. Math. de la R.S. de Roumanie Tome., 27, No. 75 (1983), 311-315.

7
M. E. Abd El-Monsef and A. M. Kozae, Some generalized forms of compactness and closedness, Delta J. Sci., 9, (1985), 257-269.

8
J. Dontchev, M. Ganster and T. Noiri, On p-closed spaces, Internat. J. Math. Math. Sci., 24 (2000), 203-2012.

9
J. Dugundji, Topology, Allyn and Bacon, Boston, Mass, (1966).

10
D. S. Jankovi$\acute{c}$, On functions with $\alpha$-closed graphs, Glas. Math., Ser III, 18 (1983), 141-148.

11
A. Kar and P. Bhattacharyya, Some weak separation axioms, Bull. Cal. Math. Soc., 82 (1990), 415-422.

12
S. Kasahara, Operation compact spaces, Math. Japonica, 24 No. 1 (1979), 97-105.

13
G. S. S. Krishnan and K. Balachandran, On $\gamma$-semiopen sets in topological spaces, Bull. Cal. Math. Soc., 98 No. 6 (2006), 517-530.

14
S. N. Maheshwari and S. S. Thakur, $\alpha$-compact spaces, Bull. Inst. Math. Acad. Sinica., 13 No. 4, (1985), 341-347.

15
S. R. Malghan, and G. B. Navalagi, Almost p-regular, p-completely regular and almost p-completely regular spaces, Bull. Math. de la Soc. Sci. (R.S.R.) Tome, 34, No. 82 (1990), 317-326.

16
A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47-53.

17
A. S. Mashhour, M. E. Abd El-Monsef and I. A. Hasanein, On pretopological spaces, Bull. Mathe. de la Soc. Math. de la R. S. de Roumanie, Tome, 28 No. 76 (1984).

18
A. S. Mashhour, M. E. Abd El-Monsef, I. A. Hasainen and T. Noiri, Strongly compact spaces, Delta J. Sci., 8 (1984), 30-46.

19
H. Ogata, Operations on topological spaces and associated topology, Math. Japonica, 36 No. 14 (1991), 175-184.

20
I. L. Reilly and M. K. Vamanamurty, On $\alpha$-continuity in topological spaces, Acta Math. Hungar., 45, No 1-2 (1985), 27-32.

21
M. K. Singal and A. Mathur, On nearly-compact spaces, Boll. Un. Mat. Ital., 4 No. 2(1969), 702-710.

22
S. Willard, General Topology, Addition-Wesley, (1970).

How to Cite?

DOI: 10.12732/ijpam.v114i3.20 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 114
Issue: 3
Pages: 659 - 670


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).