IJPAM: Volume 115, No. 1 (2017)

Title

NON-MSF MRA WAVELETS

Authors

Aparna Vyas$^1$, Gibak Kim$^2$
$^1$Image Processing and Intelligent Systems Laboratory
Graduate School of Advanced Imaging Science, Multimedia, and Film
Chung Ang University
Seoul 06974, REPUBLIC OF KOREA
$^2$School of Electrical Engineering
Soongsil University
Seoul, REPUBLIC OF KOREA

Abstract

In this article, we provide two classes of non-MSF MRA wavelets in $L^{2}(\mathbb R^{2})$. The first arose through one-dimensional dyadic wavelet sets having two components, is an uncountable family, while the second one arose through a special kind of MRA wavelet sets having three components, is a countable family.

History

Received: December 13, 2016
Revised: June 7, 2017
Published: June 29, 2017

AMS Classification, Key Words

AMS Subject Classification: 42C15, 42C40
Key Words and Phrases: $A$-wavelets, non-MSF $A$-wavelets, scaling sets, $A$-wavelet sets

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
L.W. Baggett, H.A. Medina, K.D. Merill, Generalized multiresolution analyses and a construction procedure for all wavelet sets in $\mathbb R^{n}$, J. Fourier Anal. Appl., 5 (1999), 563-573, doi: https://doi.org/10.1007/BF01257191.

2
B. Behera, Non-MSF wavelets for the Hardy space $H^{2}({\mathbb R})$, Bull. Polish Acad. Sci. Math., 52 (2004), 169-178, doi: https://doi.org/10.4064/ba52-2-7.

3
M. Bownik, Z. Rzeszotnik, D. Speegle, A characterization of dimension functions of wavelets, Appl. Comput. Harmon. Anal., 10 (2001), 71-92, doi: https://doi.org/10.1006/acha.2000.0327. M. Bownik and D. Speegle, The wavelet dimension function for real dilations and dilations admitting non-MSF wavelets, Approximation Theory X: Wavelets, Splines and Applications, Vanderbilt Univ. Press (2002), 63-85.

4
C.K. Chui, X. Shi, Orthonormal wavelets and tight frames with arbitrary real dilations, Appl. Comput. Harmon. Anal., 9 (2000), 243-264, doi: https://doi.org/10.1006/acha.2000.0316.

5
X. Dai, D. Larson, D. Speegle, Wavelet sets in $\mathbb R^{n}$, J. Fourier Anal. Appl., 3 (1997), 451-456, doi: https://doi.org/10.1007/BF02649106.

6
X. Dai, D. Larson, D. Speegle, Wavelet sets in $\mathbb R^{n}$ II, Contemp. Math., 3 (1997), 15-40.

7
Y-H. Ha, H. Kang, J. Lee, J.K. Seo, Unimodular wavelets for $L^{2}$ and the Hardy space $H^{2}$, Michigan Math. J., 41 (1994), 345-361, doi: https://doi.org/10.1307/mmj/1029005001.

8
K.D. Merill, Simple wavelet sets for scalar dilations in $\mathbb R^{2}$, Representations, Wavelets and Frames: A celebration of the mathematical work of Lawrence W. Baggett, Birkhäuser, Boston (2009), 177-192, doi: https://doi.org/10.1007/978-0-8176-4683-7_9.

9
N.K. Shukla, On Multiresolution Analysis, D. Phil. Thesis, University of Allahabad, 2010.

10
A. Vyas, Construction of non-MSF non-MRA wavelets for $L^{2}(\mathbb R)$ and $H^{2}(\mathbb R)$ from MSF wavelets, Bull. Polish Acad. Sci. Math., 57 (2009), 33-40, doi: https://doi.org/10.4064/ba57-1-4.

11
A. Vyas, R. Dubey, Non-MSF wavelets from six interval MSF wavelets, Int. J. Wavelets Multiresolut. Inf. Process., 9(3) (2011), 375-385, doi: https://doi.org/10.1142/S021969131100416X.

12
A. Vyas, R. Dubey, Wavelet sets accumulating at the origin, Real Anal. Exchange, 35(2) (2010), 463-478, doi: https://doi.org/10.14321/realanalexch.35.2.0463.

How to Cite?

DOI: 10.12732/ijpam.v115i1.1 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 115
Issue: 1
Pages: 1 - 12


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).