T-SEPARATING SETS FOR COHERENT SEQUENCES

Martin Dowd
60 Mooring Ln.
Daly City, CA 94014, USA

Abstract: In a previous paper the author used methods of Witzany to give a lower bound for the smallest repeat point of a coherent sequence. Here the notion of a T-separating set is introduced, and the lower bound is improved.

AMS Subject Classification: 03E55
Key Words: coherent sequence, repeat point

1. Introduction

In [4] some methods are introduced for constructing separating stationary sets for coherent sequences of normal ultrafilters. Some further results are given in [3]. Here these methods are improved on. Superschemes were introduced in [1], and an improved discussion is given in [2]. The methods here permit the use of superschemes in constructing separating stationary sets.

As noted in [3], by results of Mitchell there is a model \(L[U] \) such that in \(L[U] \), \(U \) is a coherent sequence of normal ultrafilters comprising all the normal ultrafilters. It is well-known that GCH holds in \(L[U] \).

Notation for coherent sequences will be as in [3]. Hereafter in this section it will be assumed that GCH holds and \(U \) is maximal, so that for a measurable cardinal \(\kappa \), \(\text{Dom}(U(\kappa)) = o(\kappa) \leq \kappa^{++} \).

2. Separating Sets

Say that \(S \) is a separating set for \(U(\kappa) \) at \(\alpha \) if \(S \in U(\kappa)(\alpha) \) but \(S \notin U(\kappa)(\beta) \).
for $\beta < \alpha$; such exists iff α is not a repeat point. Say that S is T-separating if
in addition $S \in \mathcal{U}(\kappa)(\beta)$ for $\alpha \leq \beta < \text{Dom}(\mathcal{U}(\kappa))$. These may readily be seen
to exist for α up to a bound given in theorem 22.g of [3].

Given a measurable cardinal κ and a function $f : \kappa \mapsto \text{Ord}$ let $D_f^{\geq} = \{ \lambda \in \text{Card} \cap \kappa : o(\lambda) \geq f(\lambda) \}$. For $\beta < \text{Dom}(\kappa)$, U_β will be used as an abbreviation for $\mathcal{U}(\kappa)(\beta)$.

Theorem 1. Suppos $\alpha < \text{Dom}(\mathcal{U}(\kappa))$ and f represents α on $[0, \text{Dom}(\mathcal{U}(\kappa)))$. Then D_f^{\geq} is T-separating at α.

Proof. $D_f^{\geq} \in U_\beta \iff [\alpha]_{U_\beta} \geq [f]_{U_\beta} \iff \beta \geq \alpha$. □

It may be easier to construct T-separating sets than representing functions on $[0, \text{Dom}(\mathcal{U}(\kappa)))$, and studying them in their own right is of interest.

Theorem 2. Suppose S is a separating set at α and $\alpha + 1 < \text{Dom}(\mathcal{U}(\kappa))$. Then there is a T-separating set $S' \geq \alpha + 1$.

Proof. Let $S' = \{ \lambda \in \text{Card} \cap \kappa : \exists \eta < \text{Dom}(\mathcal{U}(\kappa))(\lambda \cap \eta \in \mathcal{U}(\lambda)(\eta)) \}$. Using coherence and the fact that S is separating, $S' \in U_\beta \iff \exists \eta < \text{Dom}(\mathcal{U}(\kappa))(S \cap \eta \in \mathcal{U}(\kappa)(\eta)) \iff \beta > \alpha$. □

Theorem 3. Suppose $\eta < \kappa$, for $\xi < \eta$ S_ξ is a T-separating set at α_ξ, $\alpha = \sup_{\xi < \eta} \alpha_\xi$, and $\alpha < \text{Dom}(\mathcal{U}(\kappa))$. Let $S = \cap_{\xi < \eta} S_\xi$; then S is a T-separating set at α.

Proof. For $\beta \geq \alpha$, since $S_\xi \in U_\beta$ for $\xi < \eta$ and U_β is κ-complete, $S \in U_\beta$. If $\beta < \alpha$ then $\beta < \alpha_\xi$ for some ξ, so $S_\xi \notin U_\beta$. so $S \notin U_\beta$ since $S \subseteq S_\xi$. □

Theorem 4. Suppose for $\xi < \kappa$ S_ξ is a T-separating set at α_ξ, $\alpha = \sup_{\xi < \kappa} \alpha_\xi$, and $\alpha < \text{Dom}(\mathcal{U}(\kappa))$. Let $S = \cap_{\xi < \kappa} S_\xi$; then S is a T-separating set at α.

Proof. For $\beta \geq \alpha$, since $S_\xi \in U_\beta$ for $\xi < \kappa$ and U_β is normal, $S \in U_\beta$. If $\beta < \alpha$ then $\beta < \alpha_\xi$ for some ξ, so $S_\xi \notin U_\beta$. so $S \notin U_\beta$ since $S \subseteq S_\xi$ where \mathcal{I} is the thin ideal. □

Recall from [2] that for $\kappa \in \text{Card}$ a scheme is a pair $\Sigma = \langle \sigma, \phi \rangle$ where $\sigma < \kappa^+$ and ϕ is a function whose domain is the set of limit ordinals $\alpha \leq \sigma$. For $\alpha \in \text{Dom}(\phi)$, $\phi(\alpha)$ is an increasing function with domain an ordinal $\eta \leq \kappa$, and whose range is an unbounded subset of α. If $\text{cf}(\alpha) < \kappa$ then $\eta < \kappa$, and if $\text{cf}(\alpha) = \kappa$ then $\eta = \kappa$.

A scheme is a recipe for an iteration. Given a scheme \(\Sigma \) with \(\sigma < \text{Dom}(\kappa) \) the subset \(S^\Sigma_\alpha \) may be defined inductively for \(\alpha \leq \sigma \) as follows.

0. \(S^\Sigma_0 = \text{Card} \cap \kappa \).
1. \(S^\Sigma_{\alpha+1} = (S^\Sigma_\alpha)' \), as in theorem 2.
2. \((\alpha \in \text{Lim}, \text{cf}(\alpha) < \kappa) \cap \xi < \text{Dom}(\phi(\alpha)) S^\Sigma_\phi(\alpha)(\xi) \).
3. \((\alpha \in \text{Lim}, \text{cf}(\alpha) = \kappa) \triangle \xi < \kappa S^\Sigma_\phi(\alpha)(\xi) \).

By theorems 2-4 \(\Sigma^\alpha \) is T-separating for all \(\alpha \leq \sigma \).

Suppose there is no T-separating set at \(\alpha \), and let \(\theta \) be the least such \(\alpha \). For another corollary of theorems 2-4, \(\text{cf}(\theta) = \kappa^+ \).

3. Superschemes

Recall from [2] that for \(\kappa \in \text{Card} \) a superscheme is a pair \(\Sigma = \langle \sigma, \phi \rangle \) where \(\sigma < \kappa^{++} \) and \(\phi \) is as for a scheme. To use a superscheme for an iteration a method must be specified for obtaining \(S_\alpha \) when \(\text{cf}(\alpha) = \kappa^+ \). Some discussion of this problem will be given here.

Suppose \(\alpha = \kappa^+ \), \(U \) is a normal ultrafilter on \(\kappa \), and \(M = \text{Ult}_U(\kappa) \). Since the well-orders of \(\kappa \), coded as subsets of \(\kappa \), are the same in \(V \) and \(M \), and the order type function is \(\Delta^1 \), \((\kappa^+) \) in any \(\text{Ult}_U(V) \).

Another construction may be given by adapting a method of proposition 3.9 if [4]. As in [3] let \(C \) denote the map \(\alpha \mapsto j_{U(\kappa)(\alpha)}(\kappa) \). \(C_{U(\kappa)} \) may be written to indicate \(U \) and \(\kappa \).

Theorem 5. Suppose \(S \) is a separating set at \(\alpha \). For any \(\beta \in (\alpha, \text{min}(\text{Dom}(U(\kappa)), C(\alpha))) \) there is a T-separating set at \(\beta \).

Proof. As in the proof of theorem 2 let \(S_1 = \{ \lambda \in \text{Card} \cap \kappa : \exists \eta < \text{Dom}(\lambda)(S \cap \lambda \in U(\lambda)(\eta)) \} \), so that \(S_1 \in U_\beta \) iff \(\beta > \alpha \). For \(\lambda \in S_1 \) let \(f_\alpha(\lambda) \) be the least \(\eta \); then for \(\beta > \alpha \) the function \(f_\alpha \) represents \(\alpha \) in \(\text{Ult}(\kappa)(\beta) \). Choose \(g_\alpha : \kappa \mapsto \kappa \) such that \([g_\alpha]_{U(\kappa)(\alpha)} = \beta \). For \(\lambda \in S_1 \) let \(\hat{g}(\lambda) = [g \upharpoonright \lambda]_{U(\lambda)(f_\alpha(\lambda))} \); otherwise let \(\hat{g}(\lambda) = 0 \). Let \(M \) denote \(\text{Ult}(\kappa)(\beta) \). Then \(g \in M \), and one verifies (see [4]) that \([\hat{g}]_{U(\kappa)(\beta)} = \beta \). The set \(S_1 \cap D^\kappa_\beta \) is T-separating at \(\beta \).

Let \(C^{(1)} \) denote the fixed point enumerator of \(C \). If there is an \(\alpha \) such that
there is no T-separating set at \(\alpha \) let \(\theta \) denote the smallest such. As in theorem 22 of [3], \(C(\theta) = \theta \) and \(C^{(1)}(\kappa^+) \leq \theta \).

4. Iterating \(C \)

Let \(C(\sigma) \) denote the result of applying the fixed point operator to \(C \) \(\sigma \) times. If \(\text{Dom}(U(\kappa)) = \kappa^+ \) then for \(\sigma < \kappa^+ \) \(\text{Ran}(C^{(\sigma)}) \) is a club set, and the intersection of all these is empty. If \(\text{Dom}(U(\kappa)) < \kappa^+ \) then \(\text{Dom}(C^{(\sigma)}) \) decreases as \(\sigma \) increases, becoming \(\emptyset \) for some \(\sigma \leq \text{Dom}(U(\kappa)) \).

Theorem 6. Suppose \(\alpha < \text{Dom}(U(\kappa)) \), \(f_\alpha \) represents \(\alpha \) on \([0, \text{Dom}(U(\kappa))] \), and \(\alpha \in \text{Dom}(C^{(1)}) \). Then there is a T-separating set at \(C^{(1)}_{U(\kappa)}(\alpha) \).

Proof. Let \(S = \{ \lambda : o(\lambda) \geq C^{(1)}_{U(\lambda)}(f_\alpha(\lambda)) \} \). Then \(S \in U_\beta \) iff \(\beta \geq C^{(1)}_{U(\kappa)}(\alpha) \).

The condition on \(\lambda \) holds iff either \(\exists \eta < \text{Dom}(U(\lambda))(\eta = C^{(1)}_{U(\lambda)}(f_\alpha(\lambda))) \), or \(\text{Dom}(U(\lambda)) \) is a limit ordinal and \(\forall \zeta < f_\alpha(\lambda) \exists \eta < \text{Dom}(U(\lambda))(\eta = C^{(1)}_{U(\lambda)}(\zeta)) \) and \(\forall \zeta < \text{Dom}(U(\lambda))(\zeta < \text{Dom}(U(\lambda))) \).

Theorem 7. Suppose \(\alpha < \text{Dom}(U(\kappa)) \), there is a T-separating set at \(\alpha \), and \(C^{(1)}_{U(\kappa)}(\alpha) < \text{Dom}(U(\kappa)) \). Then there is a T-separating set at \(C^{(1)}_{U(\kappa)}(\alpha) \).

Proof. The proof of theorem 6 may be modified. Let \(S_1 \) be a T-separating set at \(\alpha \). Let \(f^E_\alpha \) be an E-representing function for \(\alpha \), as defined in [3]. Let \(S_2 \) be the set \(S \), as in the proof of theorem 6, with \(f^E_\alpha \) used in place of \(f_\alpha \). Then \(S_1 \cap S_2 \) is T-separating at \(C^{(1)}(\alpha) \).

Theorem 8. Suppose \(\alpha < \text{Dom}(U(\kappa)) \), \(f_\alpha \) represents \(\alpha \) on \([0, \text{Dom}(U(\kappa))] \), \(f_\sigma \) represents \(\sigma \) on \([0, \text{Dom}(U(\kappa))] \), and \(\alpha \in \text{Dom}(C^{(\sigma)}) \). Then there is a T-separating set at \(C^{(\sigma)}_{U(\kappa)}(\alpha) \).

Proof. Let \(S = \{ \lambda : o(\lambda) \geq C^{(\sigma)}_{U(\lambda)}(f_\alpha(\lambda)) \} \). Then \(S \in U_\beta \) iff \(\beta \geq C^{(\sigma)}_{U(\kappa)}(\alpha) \).

The condition on \(\lambda \) holds iff either \(\exists \eta < \text{Dom}(U(\lambda))(\eta = C^{(\sigma)}_{U(\lambda)}(f_\alpha(\lambda))) \), or \(\text{Dom}(U(\lambda)) \) is a limit ordinal and \(\forall \zeta < f_\alpha(\lambda) \exists \eta < \text{Dom}(U(\lambda))(\eta = C^{(\sigma)}_{U(\lambda)}(\zeta)) \) and \(\forall \zeta < \text{Dom}(U(\lambda)) \forall \tau < f_\alpha(\lambda)(C^{(\tau)}_{U(\lambda)}(\zeta) < \text{Dom}(U(\lambda))) \).

Theorem 9. Suppose \(\alpha < \text{Dom}(U(\kappa)) \), there is a T-separating set at \(\alpha \), there is a T-separating set at \(\sigma \), and \(\alpha \in \text{Dom}(C^{(\sigma)}) \). Then there is a T-separating set at \(C^{(\sigma)}_{U(\kappa)}(\alpha) \).
Proof. The proof of theorem 8 may be modified. Let \(S_{1\alpha} \) be a T-separating set at \(\alpha \). Let \(f^E_{\alpha} \) be an E-representing function for \(\alpha \). Let \(S_{1\sigma} \) be a T-separating set at \(\sigma \). Let \(f^E_{\sigma} \) be an E-representing function for \(\sigma \). Let \(S_2 \) be the set \(S \), as in the proof of theorem 8, with \(f^E_{\alpha} \) used in place of \(f_{\alpha} \) and \(f^E_{\sigma} \) used in place of \(f_{\sigma} \). Then \(S_{1\alpha} \cap S_{1\sigma} \cap S_2 \) is T-separating at \(C^{(1)}(\alpha) \).

These methods can be pursued further. Whether there are methods which may be pursued in \(L[U] \) is a question of considerable interest.

References

