IJPAM: Volume 115, No. 1 (2017)

Title

GENERALIZED VARIABLE PRECISION
ROUGH SETS WITH THE INCLUSION ERRORS

Authors

Ju-Mok Oh$^1$, Yong Chan Kim$^2$
$^{1,2}$Department of Mathematics
Gangneung-Wonju University
Gangneung, Gangwondo 25457, KOREA

Abstract

In this paper, we introduce the notion of generalized variable precision rough sets with the inclusion errors. We investigate the properties of generalized upper approximation operators and generalized lower approximation operators with the inclusion errors, respectively. We give their examples.

History

Received: February 7, 2017
Revised: May 2, 2017
Published: June 29, 2017

AMS Classification, Key Words

AMS Subject Classification: 03E72, 06A15, 06F07
Key Words and Phrases: inclusion errors, generalized lower (upper) approximation operators, generalized variable precision rough sets

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
R. Bělohlávek, Fuzzy Relational Systems, Kluwer Academic Publishers, New York, 2002.

2
D.G. Chen, J.Q. Liu, E.C.C. Tsang, Granular computing based on fuzzy similarity relations, Computing, 15(2010) 1161-1172.

3
J. Dai, H. Han, X.Zhang, M. Liu, S. Wan, J.Liu, Z. Lu, Catoptricalrough set model on two universes using granule-based definition andits variabble precision extesions, article in press InformationSciences.

4
D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, . J. Gen. Syst., 17(1990) 191-209.

5
B.Q. Hu, H. Wong, Generalized interval-valued fuzzy variable precision rough set, .J. Fuzzy Sets Syst., 16(2014) 554-565.

6
J. Kortelainen, On relationships between modified sets, topological spaces and rough sets, Sets and Systems, 61(1994) 91-95.

7
Z. Pawlak, Rough sets, Int. J.Comput. Inf. Sci., 11 (1982) 341-356.

8
Z. Pawlak, Rough probability, Bull. Pol. Acad. Sci. Math., 32(1984) 607-615.

9
J. Qiao, B.Q. Hu, Granular variable precision $L$-fuzzy rough setsbased on residuated lattices, article in press Fuzzy Sets andSystems

10
C.Y. Wang, B.Q. Hu, Granular variable precision fuzzy rough setswith general fuzzy relations Fuzzy Sets and Systems, 275(2015) 39-57, doi: 10.1016/j.fss.2015.01.016.

11
W.Z.Wu, J.S.Mi, W.X.Zhang, Generalized fuzzy rough sets, Sciences, 151(2003) 262-282, doi:10.1016/SOO20-0255(02)00379-1.

12
W.Z.Wu, Y. Leung, J.S. Mi, On characterizations of $(\varphi,\tau)$-fuzzy rough approimation operators, Fuzzy Sets andSystems, 154 (2005) 76-102, doi:10.1016/j.fss.2005.02.011.

13
Y. Yao, J.Mi, Z. Li, A novel variable preision $(\theta,\sigma)$-fuzzy rough set model based on fuzzy granules,Fuzzy Sets and Systems, 236 (2014) 58-72, doi:10.1016/j.fss.2013.06.012.

14
Y.Y. Yao, Constructive and algebraic methods oftheory of rough sets, Information Sciences, 109 (1998), 21-47.

15
Y.Y. Yao, Three-way decisions with probabilitistic rough sets, Information Sciences, 180 (2010), 341-353,doi:10.1016/j.ins.2009.09.021.

16
Zhen Ming Ma, Bao Qing Hu, Topological and lattice structures of L-fuzzy rough setdetermined by lower and upper sets, Information Sciences, 218 (2013), 194-204,doi: 10.1016/j.ins.2012.06.029.

17
W. Ziarko, Variable precision rough set model, Journal of Computer and System Sciences, 46 (1993) 39-59.

How to Cite?

DOI: 10.12732/ijpam.v115i1.6 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 115
Issue: 1
Pages: 67 - 75


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).