SOME PROPERTIES OF COVERED Γ-IDEALS
IN PO-Γ-SEMIGROUPS

Abul Basar¹§, M.Y. Abbasi², Sabahat Ali Khan³
¹,²,³Department of Mathematics
Jamia Millia Islamia
New Delhi, 110 025, INDIA

Abstract: The concept of covered ideal in semigroups has been introduced by I. Fabrici[1]. In this paper, we introduce covered Γ-ideal in po-Γ-semigroups. We study some results based on covered Γ-ideals in po-Γ-semigroup.

AMS Subject Classification: 06F05, 20M12, 16D25

Key Words: po-Γ-semigroup, covered ideal

1. Preliminaries

To start with, we need the following definition

Definition 1.1 [1]. An ideal \(M \) of a semigroup \(S \) is called covered ideal if \(M \subset S(S \setminus M)S \).

We study some properties of po-Γ-semigroups containing covered Γ-ideals. In fact the class of covered Γ-ideals in po-Γ-semigroups are a generalization of the class of covered ideals in semigroups. Consequently, as an application of results of this paper, the corresponding results for Γ-semigroups and semigroup(without order) can be obtained.

The concept of po-Γ-semigroup was introduced by Y. I. Kwon and S. K. Lee[4]. A po-Γ-semigroup is an ordered set \((S, \leq) \) at the same time a Γ-semigroup \((S, \Gamma, \cdot) \) such that \(a \leq b \Rightarrow a \cdot \alpha \cdot x \leq b \cdot \alpha \cdot x \) and \(x \cdot \beta \cdot a \leq x \cdot \beta \cdot b \) for all \(a, b, x \in S \) and \(\alpha, \beta \in \Gamma \).
For subsets A, B of a po-Γ-semigroup S, the product set $A \cdot B$ of the pair (A, B) relative to S is defined as $A \cdot \Gamma \cdot B = \{a \cdot \gamma \cdot b \mid a \in A, b \in B$ and $\gamma \in \Gamma\}$ and for $A \subseteq S$, the product set $A \cdot A$ relative to S is defined as $A^2 = A \cdot A = A \cdot \Gamma \cdot A$. For $M \subseteq S$, $(M) = \{s \in S \mid s \leq m$ for some $m \in M\}$. Also, we write (s) instead of $(\{s\})$ for $s \in S$.

For $s \in S$, the principal Γ-ideal generated by s is of the form $I(s) = (s \cup s\Gamma \cup s\Gamma S \cup s\Gamma s\Gamma S)$. We shall denote po-$\Gamma$-semigroup (S, Γ, \cdot, \leq) by S.

Green’s relation T is defined on S by, for any $a, b \in S$,

$$aTb$$

if and only if $I(a) = I(b)$.

A T-class containing an element a of S will be denoted by J_a. The T-classes of S is a quasi-ordered set where the quasi-order \preceq is defined as follows: For any $a, b \in S$,

$$J_a \preceq J_b$$

if and only if $I(a) \subseteq I(b)$.

The symbol $J_a \prec J_b$ means $J_a \preceq J_b$, but $J_a \neq J_b$. Throughout the paper, for the sake of clarity, we denote $a \cdot \gamma \cdot b$ by $a\gamma b$.

Example 1.1.[3] Let S be the set of all $m \times n$ matrices and Γ be the set of $n \times m$ matrices, where m, n are positive integers. Furthermore, define $P \leq Q \iff P \subseteq Q$ for all $P, Q \subseteq S$, then S is a po-Γ-semigroup under the usual matrix multiplication.

Example 1.2.[3] Let $P(S)$ be the power set of any nonempty set S and Γ a topology on S. If we define $LMN = L \cap M \cap N$ and $L \leq N \iff L \subseteq N$ for all $L, N \in P(S)$ and $M \in \Gamma$, then $P(S)$ is a po-Γ-semigroup.

For further properties of po-Γ-semigroups and ideal-theoretic results, we refer [2], [3].

2. Main Results

Lemma 2.1. Let s be any element of a po-Γ-semigroup (S, Γ, \cdot, \leq). If $I(s)$ is not a proper subset of any principal ideal of S, then J_s is maximal.

Proof. This is obvious. \square

Lemma 2.2. Let J be a subset of a po-Γ-semigroup (S, Γ, \cdot, \leq). Then J is a maximal \exists-class of S if and only if $S \setminus J$ is a maximal Γ-ideal of S.

Proof. Let J be a maximal \exists-class of S. Then $J = J_s$ for some $s \in S$. We obtain $S\Gamma (S \setminus J_s) \subseteq S \setminus J_s$ and $(S \setminus J_s)\Gamma \subseteq S \setminus J_s$. Let $a \in S \setminus J_s$ and $b \in S$
be such that \(b \leq a \). Then \(J_b \preceq Ja \). If \(b \in J_s \), then \(J_s \) is a maximal \(\mathcal{F} \)-class of \(S \), and therefore \(J_s = J_a \). This is a contradiction. Hence \(b \in S \setminus J_s \). This implies that \(S \setminus J_s \) is an ideal of \(S \). To prove that \(S \setminus J_s \) is a maximal ideal of \(S \), we prove that \(I \) is an ideal of \(S \) such that \((S \setminus J_s) \subset I \). Then there exists \(z \in I \setminus (S \setminus J_s) \), and so \(z \in J_s \). If \(b \in J_s \), then

\[
I(b) = I(s) = I(z) \subseteq I,
\]

and therefore \(J_s \subseteq I \). Hence \(S = I \).

Conversely, let \(S \setminus J \) is a maximal ideal of \(S \). Set \(s \in S \setminus (S \setminus J) \). If \(a \in J_s \), then \(I(a) = I(s) \); hence \(a \in J \). So \(J_s \subseteq J \). As \(S \setminus J \subseteq (S \setminus J) \cup I(s) \), it follows by assumption that \((S \setminus J) \cup I(s) = S \). It follows that \(I(a) = I(b) \) for all \(a, b \in J \). Therefore \(a \in J \) implies \(a \in J_s \). Then \(J \subseteq J_s \). Hence \(J = J_s \). If \(J_s \) is not maximal, then there exists \(b \in S \) such that \(J_s \preceq J_b \). It implies that \(I(s) \subseteq I(b) \). It further implies \(I(b) \subseteq S \setminus J \). So \(s \in S \setminus J \). This is a contradiction. \(\square \)

We now define covered \(\Gamma \)-ideals of po-\(\Gamma \)-semigroup.

Definition 2.1 A proper ideal \(M \) of po-\(\Gamma \)-semigroup \((S, \Gamma, \cdot, \preceq) \) is called covered \(\Gamma \)-ideal of \(S \) if \(M \subseteq (ST(S \setminus M)\Gamma S) \).

Proposition 2.1 If \(M_1 \) and \(M_2 \) are different proper ideals of po-\(\Gamma \)-semigroup \(S \) such that \(M_1 \cup M_2 = S \), then both \(M_1 \) and \(M_2 \) are covered ideals of \(S \).

Proof. As \(M_1 \cup M_2 = S \), it implies that \(S \setminus M_1 \subseteq M_2 \) and \(S \setminus M_2 \subseteq M_1 \). If \(M_1 \) is a covered \(\Gamma \)-ideal of \(S \), then

\[
M_1 \subseteq (ST(S \setminus M_1)\Gamma S) \subseteq (STM_2\Gamma S) \subseteq M_2.
\]

Hence \(S = M_2 \). This is impossible. Hence the Proposition is established. \(\square \)

Next corollary is a consequence of Proposition 2.1

Corollary 2.1. If a po-\(\Gamma \)-semigroup \((S, \Gamma, \cdot, \preceq) \) contains more than one maximal ideal, then none of them is a covered \(\Gamma \)-ideal of \(S \).

Proposition 2.2. Suppose \(S \) is a po-\(\Gamma \)-semigroup. If \(M_1 \) and \(M_2 \) are covered \(\Gamma \)-ideals of \(S \), then \(M_1 \cup M_2 \) is a covered \(\Gamma \)-ideal of \(S \).

Proof. Let \(M_1 \) and \(M_2 \) be covered \(\Gamma \)-ideals of \(S \). Then \(M_1 \subseteq (ST(S \setminus M_1)\Gamma S) \) and \(M_2 \subseteq (ST(S \setminus M_2)\Gamma S) \). Let \(x \in M_1 \cup M_2 \). If \(x \in M_1 \), then \(x \in (STa\Gamma S) \) for some \(a \in S \setminus M_1 \). If \(a \in S \setminus (M_1 \cup M_2) \), then \(x \in (ST(S \setminus (M_1 \cup M_2))\Gamma S) \). If \(a \in M_1 \cup M_2 \), then \(a \in M_2 \). Hence \(a \in (STb\Gamma S) \) for some \(b \in S \setminus M_2 \). We have

\[
x \in (STs\Gamma S) \subseteq (ST(STb\Gamma S)\Gamma S) = (STSTb\Gamma STS) \subseteq (STb\Gamma S).
\]
If $b \in M_1$, then $a \in M_1$. This is a contradiction. Therefore $b \in S \setminus (M_1 \cup M_2)$, and therefore $x \in (ST(S \setminus (M_1 \cup M_2))\Gamma S]$. In a similar fashion, $x \in M_2$ implies $x \in (ST(S \setminus (M_1 \cup M_2))\Gamma S]$. This shows that $M_1 \cup M_2$ is a covered Γ-ideal of S. \qed

Proposition 2.3. Suppose M is an ideal of po-Γ-semigroup S. If M_1 is a covered Γ-ideal of S, then $M_1 \cap M$ is a covered Γ-ideal of S.

Proof. If M_1 is a covered Γ-ideal of S, then $M_1 \subseteq (ST(S \setminus M_1)\Gamma S]$. Hence $M_1 \cap M \subseteq M_1 \subseteq (ST(S \setminus M_1)\Gamma S] \subseteq (ST(S \setminus (M_1 \cap M))\Gamma S]$. Hence $M_1 \cap M$ is a covered Γ-ideal of S. \qed

Corollary 2.2. Suppose (S, Γ, \cdot, \leq) is a po-Γ-semigroup. If M_1 and M_2 are covered Γ-ideals of S, then $M_1 \cap M_2$ is a covered Γ-ideal of S.

Using Proposition 2.2 and Corollary 2.1, we obtain the following:

Theorem 2.1. The set of all covered Γ-ideals of a po-Γ-semigroup (S, Γ, \cdot, \leq) is a sublattice of the lattice of all ideals of S.

Theorem 2.2. Suppose (S, Γ, \cdot, \leq) is a po-Γ-semigroup. If S is not simple, then S contains a covered Γ-ideal.

Proof. As S is not simple, S contains a proper Γ-ideal T. Since $T \cap (ST(S \setminus T)\Gamma S]$ is a proper Γ-ideal of S and $T \cap (ST(S \setminus T)\Gamma S] \subseteq (ST(S \setminus T)\Gamma S] \subseteq (ST(S \setminus (T \cap (ST(S \setminus T)\Gamma S]))\Gamma S]$. It follows that $T \cap (ST(S \setminus T)\Gamma S]$ is a covered Γ-ideal of S.

Definition 2.2. A subset A of a po-Γ-semigroup (S, Γ, \cdot, \leq) is called a two-sided base of S if it satisfies the following:

(i) $S = (A \cup A\Gamma S \cup STA \cup ST A\Gamma S]$;

(ii) If B is a subset of A such that $S = (B \cup B\Gamma S \cup STB \cup ST B\Gamma S]$, then $B = A$.

A covered Γ-ideal M of a po-Γ-semigroup (S, Γ, \cdot, \leq) is called the greatest covered Γ-ideal of S if it contains every covered Γ-ideal of S. If a po-Γ-semigroup (S, Γ, \cdot, \leq) contains the greatest covered Γ-ideal, we identify it by M^g. To give a necessary condition so that a po-Γ-semigroup (S, Γ, \cdot, \leq) contains a two-sided base, we need the following lemma.

Lemma 2.3. Suppose (S, Γ, \cdot, \leq) is a po-Γ-semigroup containing the greatest covered Γ-ideal M^g. If $M^g \subset (S^3]$, then the following assertions hold:
(i) Every \mathcal{G}-class in $(S^3) \setminus M^g$ is maximal;
(ii) $I(s) = (S\Gamma s\Gamma S]$ for all s in $(S^3) \setminus M^g$.

Proof. (ii) Suppose that $M^g \subset (S^3)$. Then $(S^3) \setminus M^g$ is nonempty. Suppose $s \in (S^3) \setminus M^g$. As M^g is a Γ-ideal of S, it follows that $J_s \subset (S^3) \setminus M^g$. Then $s \in (S\Gamma b\Gamma S]$ for some $b \in S$, and therefore $(S\Gamma s\Gamma S] \subset (S\Gamma b\Gamma S]$. As $(S\Gamma b\Gamma S] \subset I(b)$, we obtain $I(s) \subset I(b)$. Let b be not contained in J_s; so $J_s \neq J_b$. If $b \in I(s)$, then $I(s) = I(b)$. So $J_s = J_b$. This is impossible. Then $b \in S \setminus I(s)$. It follows that $I(s) \subset (S\Gamma(S \setminus I(s))\Gamma S]$, and $I(s)$ is a covered Γ-ideal of S. By Proposition 2.2, $M^g \cup I(s)$ is a covered Γ-ideal of S. As s is not contained in M^g, therefore $M^g \subset M^g \cup I(s)$. This is a contradiction. Therefore $b \in J_s$. Hence

$$I(s) \subset (S\Gamma b\Gamma S] \subset I(b) = I(s).$$

Then

$$I(s) = (S\Gamma b\Gamma S] = I(b).$$

Obviously, $(S\Gamma s\Gamma S] \subset I(s)$. If $b \leq s$, then $I(s) = (S\Gamma b\Gamma S] \subset (S\Gamma s\Gamma S]$. Thus $I(s) \subset (S\Gamma s\Gamma S]$. If $b \leq s$ is false, then $b \in (S\Gamma s \cup s\Gamma S \cup S\Gamma s\Gamma S]$, so

$$S\Gamma b\Gamma S \subset S\Gamma(S\Gamma s\Gamma S] \subset (S\Gamma(S\Gamma s\Gamma S]) \subset (S\Gamma S\Gamma S\Gamma S \subset (S\Gamma s\Gamma S].$$

In a similar fashion, if $b \in (s\Gamma S]$ or $b \in (S\Gamma s\Gamma S]$, then $(S\Gamma b\Gamma S] \subset (S\Gamma s\Gamma S]$. So,

$$I(s) = I(b) = (S\Gamma b\Gamma S] \subset (S\Gamma s\Gamma S].$$

(i) Let J_s be a \mathcal{G}-class in $(S^3) \setminus M^g$. Let J_s be not maximal. By Lemma 1.1, we have $I(s) \subset I(c)$ for some c in S. Then $s \in I(c)$. So $s \in (c\Gamma S]$ or $s \in (S\Gamma c\Gamma S]$. Each of the cases implies $(S\Gamma s\Gamma S] \subset (S\Gamma c\Gamma S]$, and therefore $I(s) \subset (S\Gamma c\Gamma S]$. As $c \in S \setminus I(s)$, it shows that $I(s)$ is a covered Γ-ideal of S. Therefore $M^g \subset M^g \cup I(s)$. This is a contradiction. Thus any \mathcal{G}-class in $(S^3) \setminus M^g$ is maximal. \qed

Theorem 2.3. Suppose (S, Γ, \cdot, \leq) is a po-Γ-semigroup containing the greatest covered Γ-ideal M^g. Then S contains a two-sided base if it satisfies the following:

(i) $M^g \subset (S^3]$;
(ii) For any two elements $a, b \in S \setminus (S^2)$, neither $J_a \leq J_b$ nor $J_b \leq J_a$.

Proof. Let $M^g \subset (S^3]$ and any two elements $a, b \in S \setminus (S^2)$ are incomparable. By

$$M^g \subset (S\Gamma(S \setminus M^g)\Gamma S] \subset (S^3] \subset (S^2] \subset S,$$
there are three families of \mathcal{I}-classes to consider: $C_1 = \{J_a \mid a \in S \setminus (S^2)\}$, $C_2 = \{J_a \mid a \in (S^2) \setminus (S^3)\}$, and $C_3 = \{J_a \mid a \in (S^3) \setminus M^g\}$. Consider one element from each \mathcal{I}-class from C_1 and C_3. Suppose A is the set of all elements we take, we claim that A is a two-sided base of S. Furthermore, suppose $I(A) = (A \cup \Sigma A \cup A \Gamma S \cup \Sigma \Gamma A S)$. To prove that $S = I(A)$, it is sufficient to prove that M^g, $(S^3) \setminus M^g$, $(S^2) \setminus (S^3)$, and $S \setminus (S^2)$ are subsets of $I(A)$.

(a) Let $x \in M^g$. Then $x \in (\Sigma (S \setminus M^g) \Gamma S)$, or equivalently $x \in (\Sigma b \Gamma S)$ for some $b \in S \setminus M^g$. We obtain $b \in J_a$ for some $a \in S \setminus (S^2)$ or $a \in (S^2) \setminus (S^3)$ or $a \in (S^3) \setminus M^g$. If $a \in S \setminus (S^2)$ or $a \in (S^3) \setminus M^g$, then by constructing A, we obtain $b \in I(A)$. Hence $x \in I(A)$. Let $a \in (S^2) \setminus (S^3)$. Then $a \leq c \gamma d$ for some $c, d \in S$ and $\gamma \in \Gamma$. As a is not contained in (S^3), it shows that $c, d \in S \setminus (S^2)$. It follows that $a \in I(A)$, and so $b \in I(A)$. Therefore $x \in I(A)$.

(b) If $x \in (S^3) \setminus M^g$, then there exists $a_1 \in A$ such that $x \in I(a_1)$. Therefore $x \in I(A)$.

(c) If $x \in (S^2) \setminus (S^3)$, then the proof is similar to (a).

(d) If $x \in S \setminus (S^2)$, then there exists $a_2 \in A$ such that $x \in I(a_2) \subseteq I(A)$.

Finally, we prove that A is the minimal subset of S such that $S = I(A)$. By Lemma 2.1, it follows that $J_a \in C_3$ is maximal. Moreover, every $J_a \in C_1$ is also maximal as for any elements $a, b \in S \setminus (S^2)$, neither $J_a \succeq J_b$ nor $J_b \succeq J_a$. Now suppose B is a proper subset of A such that $S = (B \cup \Sigma B \Gamma B \cup B \Gamma S \cup \Sigma B \Gamma S)$. Suppose $x \in A \setminus B$. Then $x \leq y$ for some $y \in B \cup \Sigma B \Gamma B \cup B \Gamma S \cup \Sigma B \Gamma S$. As $y \in I(b)$ for some $b \in B$, it implies that $I(x) \subset I(b)$. This contradicts to the construction of A.

Suppose (S, Γ, \cdot, \leq) is a po-Γ-semigroup. An ideal M of S is called the greatest ideal of S if it contains every proper Γ-ideal of S. If a po-Γ-semigroup (S, Γ, \cdot, \leq) contains the greatest Γ-ideal, we denote it by M^\ast.

Theorem 2.3. Suppose (S, Γ, \cdot, \leq) is a po-Γ-semigroup containing only one maximal ideal M. If M is a covered Γ-ideal of S, then M is the greatest Γ-ideal of S.

Proof. This is clear to see since if T is a proper Γ-ideal of S, then $T \subseteq M$. Hence $M = M^\ast$ by Proposition 2.1. \square

Theorem 2.4. Suppose (S, Γ, \cdot, \leq) is a po-Γ-semigroup with the property that every proper Γ-ideal of S is a covered Γ-ideal of S. Then either one of the following statements hold:

1. S contains M^\ast.
2. $S = (S^2)$ and for any proper Γ-ideal M and for every Γ-ideal $I(a) \subseteq M$, there is b in $S \setminus M$ such that $I(a) \subset I(b) \subset S$.

Proof. This is clear to see. \square
Proof. Let J_x and J_y be maximal \mathfrak{T}-classes of S such that $J_x \neq J_y$. Then by Lemma 2.1, $M_x = S \setminus J_x$ and $M_y = S \setminus J_y$ are maximal proper Γ-ideals of S such that none of them is a covered Γ-ideal of S. This is a contradiction. Then S contains no different maximal \mathfrak{T}-class. Therefore S contains one maximal \mathfrak{T}-class or S does not contain maximal \mathfrak{T}-class. If S contains one maximal \mathfrak{T}-class J_x. Then $M_x = S \setminus J_x$ is a maximal proper Γ-ideal of S. By hypothesis, M_x is a covered Γ-ideal of S. By Theorem 2.3, $M_x = M^*$. Suppose S does not contain maximal \mathfrak{T}-class. To prove that $S = (S^2)$. Assume $(S^2) \subset S$. Then there exists s in $S \setminus (S^2)$. If $I(s) = S$, then S contains a maximal \mathfrak{T}-class. This is impossible. Then $I(s) \subset S$, and so $I(s) \subseteq (ST(S \setminus I(s)) \Gamma S)$. Then $s \in (S^3) \subseteq (S^2)$. This is a contradiction. Let M be a proper Γ-ideal of S, and suppose $I(a) \subseteq M$. As $M \subseteq (ST(S \setminus M) \Gamma S)$, there exists $b \in S \setminus M$ so that $a \in (STb \Gamma S)$, and hence $I(a) \subseteq I(b) \subseteq S$. As $b \in S \setminus M$, so $I(a) \subset I(b)$. By the hypothesis, $I(b) \subset S$. □

Theorem 2.5. Suppose that a po-Γ-semigroup (S, Γ, \cdot, \leq) satisfies one of the following:

1. S contains M^* which is a covered Γ-ideal of S;
2. $S = (S^2)$, and for any proper Γ-ideal M and for every Γ-ideal $I(a) \subseteq M$, there is b in $S \setminus M$ such that $I(a) \subseteq I(b)$.

Then every proper Γ-ideal of S is a covered Γ-ideal of S.

Proof. Suppose M is a proper Γ-ideal of S. Suppose S satisfies (1). Then $M \subseteq M^*$. As $S \setminus M^* \subseteq S \setminus M$, it implies that

$$M \subseteq M^* \subseteq (ST(S \setminus M^*) \Gamma S) \subseteq (ST(S \setminus M) \Gamma S).$$

Then M is a covered Γ-ideal of S.

Now suppose that the condition (2) holds. Let $x \in M$; so $I(x) \subseteq M$. We have $I(x) \subseteq I(b)$. As $S = (S^2)$, therefore $S = (S^3)$. Hence $b \in (STd \Gamma S)$ for some $d \in S$. As $b \in S \setminus M$, therefore $d \in S \setminus M$. Hence $x \in (STd \Gamma S) \subseteq (ST(S \setminus M) \Gamma S)$. It implies that $M \subseteq (ST(S \setminus M) \Gamma S)$.

References