IJPAM: Volume 115, No. 2 (2017)

Title

ON AN EXTENSION OF SHARP DOMAINS

Authors

Chahn Yong Jung$^1$, Waseem Khalid$^2$, Waqas Nazeer$^3$,
Tayyab Tariq$^4$, Shin Min Kang$^5$
$^1$Department of Business Administration
Gyeongsang National University
Jinju, 52828, KOREA
$^{2,4}$Department of Mathematics
The University of Lahore
Pakpattan, 57400, PAKISTAN
$^3$Division of Science and Technology
University of Education
Lahore, 54000, PAKISTAN
$^5$Department of Mathematics and RINS
Gyeongsang National University
Jinju 52828, KOREA

Abstract

As an extension of the class of sharp domains introduced by Ahmad et al., we introduce and study a class of integral domains $D$ characterized by the property that whenever $X,Y_{1},Y_{2}$ are nonzero ideals of $D$ with ${X \supseteq Y_{1}Y_{2}}$, there exist nonzero ideals $Z_{1}$ and $Z_{2}$ such that $X_{w}$ = $(Z_{1}Z_{2})_{w}$, $(Z_{1})_{w} \supseteq Y_{1}$ and $(Z_{2})_{w} \supseteq Y_{2}$. We call $D$ with this property a $w$-sharp domain. We show that every fraction ring of a $w$-sharp domain is $w$-sharp, that a $w$-Dedekind domain is $w$-sharp and that every nonzero finitely generated ideal of a $w$-sharp domain is $w$-invertible.

History

Received: January 31, 2017
Revised: July 5, 2017
Published: July 14, 2017

AMS Classification, Key Words

AMS Subject Classification: 13A15, 13F05
Key Words and Phrases: Schreier domain, pseudo-Dedekind domain, Prüfer domain

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
Z. Ahmed, T. Dumitrescu, Almost quasi-Schreier domains, Comm. Algebra, 41 (2013), 1685-1696, doi: https://doi.org/10.1080/00927872.2011.649505.

2
Z. Ahmad, T. Dumitrescu, M. Epure, A Schreier domain type condition, Bull. Math. Soc. Sci. Math. Roumanie Tome, 55(103) (2012), 241-247.

3
D.D. Anderson, Star-operations induced by overrings, Comm. Algebra, 16 (1988), 2535-2553, doi: https://doi.org/10.1080/00927879808823702.

4
D.D. Anderson, S.J. Cook, Two star-operations and their induced latices, Comm. Algebra, 28 (2000), 2461-2475, doi: https://doi.org/10.1080/00927870008826970.

5
D.D. Anderson, T. Dumitrescu, M. Zafrullah, Quasi-Schreier domains II, Comm. Algebra, 35 (2007), 2096-2104, doi: https://doi.org/10.1080/00927870701302107.

6
D.D. Anderson,M. Zafrullah, Independent locally-finite intersections of localizations, Houston J. Math., 25 (1999), 433-452.

7
S.El Baghdadi, M. Fontana, G. Picozza, Semistar Dedekind domains, J. Pure Appl. Algebra, 193 (2004), 27-60, doi: https://doi.org/10.1016/j.jpaa.2004.03.011.

8
A. Bouvier, M. Zafrullah, On some class groups of an integral domain, Bull. Soc. Math. Grèce, 29 (1988), 45-59.

9
P.M. Cohn, Bézout rings and their subrings, Proc. Cambridge Philos. Soc., 64 (1968), 251-264.

10
T. Dumitrescu, W. Khalid, Almost-Schreier domains, Comm. Algebra, 38 (2010), 2981-2991, doi: https://doi.org/10.1080/00927870903100101.

11
T. Dumitrescu, R. Moldovan, Quasi-Schreier domains, Math. Reports, 5 (2003), 121-126.

12
T. Dumitrescu, M. Zafrullah, Characterizing domains of finite $*$-character, J. Pure Appl. Algebra, 214 (2010), 2087-2091, doi: https://doi.org/10.1016/j.jpaa.2010.02.014.

12
T. Dumitrescu, M. Zafrullah, t-Schreier domains, Comm. Algebra, 39 (2011), 808-818, doi: https://doi.org/10.1080/00927871003597642.

13
M. Fontana, P. Jara, E. Santos, Prüfer $\star$-multiplication domains and semistar operations, J. Algebra Appl., 2 (2003), 21-50, doi: https://doi.org/10.1142/S0219498803000349.

14
R. Gilmer, Multiplicative Ideal Theory, Pure Appl. Math., No. 12, Marcel Dekker, Inc, New York, 1972.

15
M. Griffin, Some results on $v$-multiplication rings, Canad. J. Math., 19 (1967), 710-722, doi: https://doi.org/10.4153/CJM-1967-065-8. Canad. J. Math. 19(1967), 710-722

16
B.G. Kang, Prüfer $v$-multiplication domains and the ring $R[x]_{N_{v}}$, J. Algebra, 123 (1989), 151-170, doi: https://doi.org/10.1016/0021-8693(89)90040-9.

17
I. Kaplansky, Commutative Rings, The University of Chicago Press, Chicago, 1974.

18
S. McAdam, D.E. Rush, Schreier Rings, Bull. London Math. Soc., 10 (1978), 77-80, doi: https://doi.org/10.1112/blms/10.1.77.

19
M. Zafrullah, On a property of pre-Schreier domains, Comm. Algebra, 15 (1987), 1895-1920, doi: https://doi.org/10.1080/00927878708823512.

How to Cite?

DOI: 10.12732/ijpam.v115i2.12 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 115
Issue: 2
Pages: 353 - 360


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).