IJPAM: Volume 115, No. 2 (2017)
Title
ON AN EXTENSION OF SHARP DOMAINSAuthors
Chahn Yong Jung


Tayyab Tariq



Gyeongsang National University
Jinju, 52828, KOREA

The University of Lahore
Pakpattan, 57400, PAKISTAN

University of Education
Lahore, 54000, PAKISTAN

Gyeongsang National University
Jinju 52828, KOREA
Abstract
As an extension of the class of sharp domains introduced by Ahmad et al., we introduce and study a class of integral domains

















History
Received: January 31, 2017
Revised: July 5, 2017
Published: July 14, 2017
AMS Classification, Key Words
AMS Subject Classification: 13A15, 13F05
Key Words and Phrases: Schreier domain, pseudo-Dedekind domain, Prüfer domain
Download Section
Download paper from here.You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.
Bibliography
- 1
- Z. Ahmed, T. Dumitrescu, Almost quasi-Schreier domains, Comm. Algebra, 41 (2013), 1685-1696, doi: https://doi.org/10.1080/00927872.2011.649505.
- 2
- Z. Ahmad, T. Dumitrescu, M. Epure, A Schreier domain type condition, Bull. Math. Soc. Sci. Math. Roumanie Tome, 55(103) (2012), 241-247.
- 3
- D.D. Anderson, Star-operations induced by overrings, Comm. Algebra, 16 (1988), 2535-2553, doi: https://doi.org/10.1080/00927879808823702.
- 4
- D.D. Anderson, S.J. Cook, Two star-operations and their induced latices, Comm. Algebra, 28 (2000), 2461-2475, doi: https://doi.org/10.1080/00927870008826970.
- 5
- D.D. Anderson, T. Dumitrescu, M. Zafrullah, Quasi-Schreier domains II, Comm. Algebra, 35 (2007), 2096-2104, doi: https://doi.org/10.1080/00927870701302107.
- 6
- D.D. Anderson,M. Zafrullah, Independent locally-finite intersections of localizations, Houston J. Math., 25 (1999), 433-452.
- 7
- S.El Baghdadi, M. Fontana, G. Picozza, Semistar Dedekind domains, J. Pure Appl. Algebra, 193 (2004), 27-60, doi: https://doi.org/10.1016/j.jpaa.2004.03.011.
- 8
- A. Bouvier, M. Zafrullah, On some class groups of an integral domain, Bull. Soc. Math. Grèce, 29 (1988), 45-59.
- 9
- P.M. Cohn, Bézout rings and their subrings, Proc. Cambridge Philos. Soc., 64 (1968), 251-264.
- 10
- T. Dumitrescu, W. Khalid, Almost-Schreier domains, Comm. Algebra, 38 (2010), 2981-2991, doi: https://doi.org/10.1080/00927870903100101.
- 11
- T. Dumitrescu, R. Moldovan, Quasi-Schreier domains, Math. Reports, 5 (2003), 121-126.
- 12
- T. Dumitrescu, M. Zafrullah,
Characterizing domains of finite
-character, J. Pure Appl. Algebra, 214 (2010), 2087-2091, doi: https://doi.org/10.1016/j.jpaa.2010.02.014.
- 12
- T. Dumitrescu, M. Zafrullah, t-Schreier domains, Comm. Algebra, 39 (2011), 808-818, doi: https://doi.org/10.1080/00927871003597642.
- 13
- M. Fontana, P. Jara, E. Santos,
Prüfer
-multiplication domains and semistar operations, J. Algebra Appl., 2 (2003), 21-50, doi: https://doi.org/10.1142/S0219498803000349.
- 14
- R. Gilmer, Multiplicative Ideal Theory, Pure Appl. Math., No. 12, Marcel Dekker, Inc, New York, 1972.
- 15
- M. Griffin,
Some results on
-multiplication rings, Canad. J. Math., 19 (1967), 710-722, doi: https://doi.org/10.4153/CJM-1967-065-8. Canad. J. Math. 19(1967), 710-722
- 16
- B.G. Kang,
Prüfer
-multiplication domains and the ring
, J. Algebra, 123 (1989), 151-170, doi: https://doi.org/10.1016/0021-8693(89)90040-9.
- 17
- I. Kaplansky, Commutative Rings, The University of Chicago Press, Chicago, 1974.
- 18
- S. McAdam, D.E. Rush, Schreier Rings, Bull. London Math. Soc., 10 (1978), 77-80, doi: https://doi.org/10.1112/blms/10.1.77.
- 19
- M. Zafrullah, On a property of pre-Schreier domains, Comm. Algebra, 15 (1987), 1895-1920, doi: https://doi.org/10.1080/00927878708823512.
How to Cite?
DOI: 10.12732/ijpam.v115i2.12 How to cite this paper?Source: International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 115
Issue: 2
Pages: 353 - 360
Google Scholar; DOI (International DOI Foundation); WorldCAT.
This work is licensed under the Creative Commons Attribution International License (CC BY).