IJPAM: Volume 115, No. 2 (2017)

Title

COMPUTING SANSKRUTI INDEX
OF DENDRIMER NANOSTARS

Authors

Yingying Gao$^1$, Muhammad Shoaib Sardar$^2$,
Sohail Zafar$^3$, Mohammad Reza Farahani$^4$
$^1$Colleage of Pharmacy and Biological Engineering
Chengdu University
Chengdu, 610106, P.R. CHINA
$^2$Department of Mathematics
University of Management and Technology (UMT)
Lahore, PAKISTAN
$^{3,4}$Department of Applied Mathematics
Iran University of Science and Technology (IUST)
Narmak, Tehran 16844, IRAN

Abstract

Let $G=(V;E)$ be a simple connected graph. The Sanskruti index was introduced by Hosamani [7] and defined as $S(G)=\sum_{uv \in E(G)}
(\frac{S_uS_v}{S_u+S_v-2})^3$ where $S_u$ is the summation of degrees of all neighbors of vertex $u$ in $G$. In this paper, we give explicit formulas for the Sanskruti index of an infinite class of dendrimer nanostars.

History

Received: March 30, 2017
Revised: June 29, 2017
Published: July 14, 2017

AMS Classification, Key Words

AMS Subject Classification:
Key Words and Phrases: molecular graph, nanostar dendrimers, Sanskruti index

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
D.B. West, An Introduction to Graph Theory. Prentice-Hall (1996).

2
N. Trinajstic, Chemical Graph Theory. CRC Press, Bo ca Raton, FL (1992).

3
R. Todeschini, V. Consonni, Handbook of Molecular Descriptors. Wiley, Weinheim (2000).

4
D. Vukicevic, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edge. J. Math. Chem. 46 (2009), 1369-1376. Doi:10.1007/s10910-009-9520-x

5
M.R. Farahani, Some Connectivity Indices and Zagreb Index of Polyhex Nanotubes. Acta Chim. Slov. 59, 779-783 (2012).

6
M. Randi$\acute{c}$, On Characterization of Molecular Branching, J. Am. Chem. Soc., 97(23), (1975), 6609-6615. DOI: 10.1021/ja00856a001

7
S.M. Hosamani, Computing Sanskruti index of certain nanostructures. Journal of Applied Mathematics and Computing. In press. DOI 10.1007/s12190-016-1016-9.

8
S. Alikhani, M.A. Iranmanesh, Eccentric connectivity polynomials of an infinite familty of dendrimers. Digest Journal of Nanomaterials and Biostructures. 6(1), (2011), 253-257.

9
A.R. Ashrafi, P. Nikzad, Connectivity index of the family of dendrimers nanostars. Digest Journal of Nanomaterials and Biostructures. 4(2), (2009), 269-273.

10
A.R. Ashrafi, P. Nikzad, Kekule index and bounds of energy gor nanostar dendrimers. Digest Journal of Nanomaterials and Biostructures. 4(2), (2009), 383-388.

11
A. Heydari, B. Taeri, MATCH Communications in Mathematical and in Computer Chemistry, 57, (2007), 463.

12
M. Eliasi, B. Taeri, MATCH Communications in Mathematical and in Computer Chemistry, 59, (2008), 437.

13
M. Golriz, M.R. Darafsheh and M.H. Khalifeh, The Wiener, Szeged and PI-indices of a phenylazomethine dendrimer. Digest Journal of Nanomaterials and Biostructures. 6(4), (2011), 1545-1549.

14
A. Karbasioun, A.R. Ashrafi, Wiener and detour indices of a new type of nanostar dendrimers. Macedonian Journal of Chemistry and Chemical Engineering. 28(1), (2009), 49-54.

15
D.A. Klarner. Polyominoes, Int. J. E. Goodman, J. ORourke, (eds.) Handbook of Discrete and Computational Geometry. CRC Press, Boca Raton. Chapter 12, (1997), 225-242.

16
G.R. Newkome, C.N. Moorefield, F. Vogtlen, Dendrimers and Dendrons. Concepts, Syntheses, Applications (Wiley-VCH Verlag Gmbh and Co. Kgaa), (2002).

17
M.R. Farahani, Some Connectivity index of an infinite class of Dendrimer Nanostars. Journal of Applied Physical Science International. 3(3), 2015, 99-105.

18
M.R. Farahani, Fourth atom-bond connectivity index of an infinite class of Nanostar Dendrimer $D_3[n]$. Journal of Advances in Chemistry. 4(1), (2013), 301-305.

19
M.R. Farahani, Computing Fifth Geometric-Arithmetic Index of Dendrimer Nanostars. Advances in Materials and Corrosion. 1,(2013),62-64.

20
D.X. Li, J.B. Liu, M. Rezaei, M.R. Farahani, Zagreb Indices and Zagreb Polynomials of an Infinite Class of Dendrimer Nanostars Journal of Computational and Theoretical Nanoscience. 13(12), 2016, 9136-9139. DOI: https://doi.org/10.1166/jctn.2016.6293

21
M.R. Farahani, On Multiple Zagreb indices of Dendrimer Nanostars. International Letters of Chemistry, Physics and Astronomy. 52, (2015), 147-151. DOI: 10.18052/www.scipress.com/ILCPA.52.147

22
W. Gao, M.R. Farahani: Hyper-Zagreb Index for an infinite family of Nanostar Dendrimer Journal of Discrete Mathematical Sciences and Cryptography. 20(6), 2017, In press. DOI : 10.1080/09720529.2016.1220088

23
M.R. Farahani, W. Gao, M.R. Rajesh Kanna, The Connective Eccentric Index for an Infinite Family of Dendrimers. Indian Journal of Fundamental and Applied Life Sciences. 2015, $5(S4)$, 766-771.

24
L. Yan, Y. Li, A. Alkenani, M.R. Farahani, M.R. Rajesh Kanna, P.R. Kumar, Ediz Eccentric Connectivity index of $D_3[n]$ International Journal of Biology, Pharmacy and Allied Sciences. 5(7), 2016, 1591-1596.

25
W. Gao, M.R. Farahani, M.K. Jamil, Augmented Eccentric Connectivity indices of $D_3[n]$ Chemical Engineering and Chemoinformatics (Dr. Haghi) Applied Chemistry and Chemical Engineering, Volume 1, Apple Academic Press.

26
W. Gao, M.R. Farahani, M.R. Rajesh Kanna, The Multiplicative Zagreb Indices of Nanostructures and Chains. Open Journal of Discrete Mathematics, 6, 2016, 82-88. DOI: 10.4236/ojdm.2016.62008

How to Cite?

DOI: 10.12732/ijpam.v115i2.16 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 115
Issue: 2
Pages: 399 - 404


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).