IJPAM: Volume 115, No. 2 (2017)

Title

THE EDGE VERSION OF RANDIĆ, ZAGREB, ATOM
BOND CONNECTIVITY AND GEOMETRIC-ARITHMETIC
INDICES OF $HAC_5C_6C_7[P,Q]$ NANOTUBE

Authors

Yingying Gao$^1$, Wasim Sajjad$^2$,
Abdul Qudair Baig$^3$, Mohammad Reza Farahani$^4$
$^1$College of Pharmacy and Biological Engineering
Chengdu University
Chengdu, 610106, P.R. CHINA
$^2$Department of Mathematics
University of Sargodha
Mandi Bahauddin Campus
Mandi Bahauddin, PAKISTAN
$^3$Department of Mathematics
COMSATS Institute of Information Technology
Attock Campus, PAKISTAN
$^4$Department of Applied Mathematics
Iran University of Science and Technology (IUST)
Narmak, Tehran, 16844, IRAN

Abstract

Let $G$ be a simple molecular graph with vertex set $V(G)$ and edge set $E(G)$ respectively. The degree $deg(v)$ of the vertex $v\in V(G)$ is the number of vertices adjacent with vertex $v$. A graph can be recognized by a numeric number, a polynomial, a sequence of numbers or a matrix. A topological index is a numeric quantity associated with a graph which characterize the topology of graph and is invariant under graph automorphism. Topological indices play important role in mathematical chemistry especially in the quantitative structure-property relationship (QSPR) and quantitative structure-activity relationship (QSAR) studies.

In this paper we consider the line graph of $HAC_5C_6C_7[p, q]$ nanotube for $p\geq 1$ and $q=2$ and we compute the edge version of Randić, Zagreb, Atom Bond Connectivity its fourth version and Geometric-arithmetic index with its fifth version.

History

Received: March 30, 2017
Revised: June 29, 2017
Published: July 14, 2017

AMS Classification, Key Words

AMS Subject Classification: 05C12, 05C90
Key Words and Phrases: general Randić index, Zagreb index, atom-bond connectivity index, geometric-arithmetic index, nanotubes

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
M. Ba$\check{c}$a, J. Horv$\acute{a}$thov$\acute{a}$, M. Mokri$\check{s}$ov$\acute{a}$, A. Suh$\acute{a}$nyiov$\check{a}$, On topological indices of fullerenes, Appl. Math. Comput. $\textbf{251}(2015)$, $154-161$. DOI: 10.1016/j.amc.2014.11.069

2
A. Q. Baig, M. Imran, H. Ali, On Topological Indices of Poly Oxide, Poly Silicate, DOX and DSL Networks, Can. J. Chem. $\textbf{93}(2015)$, $730-739$. DOI: 10.1139/cjc-2014-0490

3
B. Bollobas, P. Erdos, Graphs of extremal weights, Ars Combin. 50 (1998),225-233.

4
M. Deza, P.W. Fowler, A. Rassat, K.M. Rogers, Fullerenes as tiling of surfaces, J. Chem. Inf. Comput. Sci. $\textbf{40}(2000),
550-558$. DOI: 10.1021/ci990066h

5
M.V. Diudea, I. Gutman, J. Lorentz, Molecular Topology, Nova, Huntington, $2001.$

6
E. Estrada, L. Torres, L. Rodriguez and I. Gutman, An Atom-Bond Connectivity Index: Modelling the Enthalpy of Formation of Alkanes. Indian J. Chem. $\textbf{37A}, (1998)$, $849 - 855$.

7
M. Essalih, M. Marraki, G. Hagri, Calculation of Some Topological Indices of Graphs, Journal of Theoretical and Applied Information Technology, 30(2), (2011), 122-127.

8
M.R. Farahani, The edge version of atom bond connectivity index of connected graph, Acta Universitatis Apulensis, 36 (2013), 277-284.

9
M.R. Farahani, Fourth Atom-bond connectivity index of an infinite class of Nanostar Dendrimer $D_{3}[n]$, Journal of Advances in Chemistry, 4(1), (2013), 301-305.

10
M.R. Farahani, M.R. Kanna, Generalized Zagreb index of V-Phenylenic nanotubes and nanotori, Journal of chemical and pharamaceutical research, 7(11), (2015), 241-245.

11
M.R. Farahani. The First And Second Zagreb Indices, First And Second Zagreb Polynomials Of $HAC_5C_6C_7[p, q]$ And $HAC_5C_7[p,q]$ Nanotubes, Int. J. Nanosci. Nanotechnol., 8(3), Sep. (2012), 175-180.

12
M.R. Farahani. On the Randić and sum-connectivity index of some graphs. Algebras, Goups and Geometries. 29(4), 2012, 415-422. DOI 10.1112/S0010437X08003710.

13
M.R. Farahani. Atom Bond Connectivity And Geometric-Arithmetic Indices Of $HAC_5C_7[p,q]$ Nanotube, International Journal of Chemical Modeling. 5(1), 127-132, (2013).

14
M.R. Farahani. The Atom Bond connectivity ABC and Geometric-Arithmetic GA Indices of Pent-Heptagonal Nanotube. Pacific Journal of Applied Mathematics. 7(1), 2015, In press

15
M.R. Farahani. Zagreb indices and Zagreb Polynomials of Pent-Heptagon Nanotube $VAC_5C_7(S)$. Chemical Physics Research Journal. 6(1), 35-40, (2013).

16
M.R. Farahani. Connectivity Indices of Pent-Heptagonal Nanotubes $VAC_5C_7[p,q]$. Advances in Materials and Corrosion. 2, (2013), 33-35.

17
M.R. Farahani. First and Second Zagreb polynomials of $VC_5C_7[p,q]$ and $HC_5C_7[p,q]$ nanotubes. International Letters of Chemistry, Physics and Astronomy. 12(2), (2014), 56-62.

18
M.R. Farahani. On the Randić and sum-connectivity index of Nanotubes. Annals of West University of Timisoara-Mathematics and Computer Science. 51(2), (2013), 39-46. DOI: https://doi.org/10.2478/awutm-2013-0014

19
M.R. Farahani. On The Geometric-Arithmetic And Atom Bond Connectivity Index Of $HAC_5C_6C_7[p, q]$ Nanotube. Chemical Physics Research Journal. 6(1),21-26, (2013).

20
M. Ghorbani, M.A. Hosseinzadeh, Computing $ABC_{4}$ index of nanostar dendrimers, Optoelectron. Adv. Mater. Rapid Commun, $\textbf{4}(2010)$, $1419-1422$.

21
A. Graovac, M. Ghorbani, M. A. Hosseinzadeh, Computing fifth geometric-arithmetic index for nanostar dendrimers, J. Math. Nanosci. $\textbf{1}(2011)$, $33-42$.

22
I. Gutman, N. Trinajstic Graph theory and molecular orbitals. Total $\pi$-electron energy of alternant hydrocarbons, Chem, Phys. Lett. 17, (1972) 535-538. DOI: 10.1016/0009-2614(72)85099-1

23
I. Gutman, O.E. Polansky, Mathematical concepts in organic chemistry, Springer-Verlag, New York, $1986$.

24
I. Gutmasn, Edge-decomposition of topological indices, Iranian Journal of Mathematical Chemistry, 6(2), (2015), 103-108.

25
S. Hayat, M. Imran, Computation of certain topological indices of nanotubes, J. Comput. Theor. Nanosci. $\textbf{12(1)}, (2015)$, $70-76$. DOI: 10.1166/jctn.2015.3699

26
S. Hayat, M. Imran, Computation of certain topological indices of nanotubes covered by $C_{5}$ and $C_{7}$, J. Comput. Theor. Nanosci. 12(4), (2015), 533-541. DOI: 10.1166/jctn.2015.3761

27
S. Hayat, M. Imran, On some degree based topological indices of certain nanotubes, J. Comput. Theor. Nanosci. $\textbf{12(8)},
(2015)$, 1599-1605. DOI: https://doi.org/10.1166/jctn.2015.3935

28
S. Hayat, M. Imran, Computation of topological indices of certain networks, Appl. Math. Comput. $\textbf{240}(2014)$, $213-228.$ DOI: 10.1016/j.amc.2014.04.091

29
M. Imran, A. Q. Baig, H. Ali, S. U. Rehman, On Topological properties of poly honeycomb networks. Periodica Mathematica Hungaric. 73(1) (2016), 100-119. DOI: 10.1007/s10998-016-0132-5

30
A. Iranmanesh, M. Zeraatkar, Computing GA index for some nanotubes, Optoelectron. Adv. Mater. Rapid Commun. $\textbf{4}(2010)$, $1852-1855$.

31
M.K. Jamil, A. Javed, W. Nazeer, M.R. Farahani, Y.Y. Gao. Four Vertex-Degree-Based Topological Indices of $VC_5C_7[p;q]$ Nanotubes. Communications in Mathematics and Applications. 2017, In press.

32
Y. Li, L. Yan, M.K. Jamil, M.R. Farahani, W. Gao, J.B. Liu. Four New/Old Vertex-Degree-Based Topological Indices of $HAC_5C_7[p,q]$ and $HAC_5C_6C_7[p, q]$ Nanotubes. Journal of Computational and Theoretical Nanoscience. 14(1), 2017, 796-799. DOI: https://doi.org/10.1166/jctn.2017.6275

33
W. Lin, J. Chen, Q. Chen, T. Gao, X. Lin, B. Cai, Fast computer search for trees with minimal ABC index based on tree degree sequences, MATCH Communications in Mathematical and in Computer Chemistry $\textbf{72}(2014)$, $699-708$.

34
P. D. Manuel, M. I. Abd-El-Barr, I. Rajasingh, B. Rajan, An efficient representation of Benes networks and its applications, Journal of Discrete Algorithms, $\textbf{6}(2008)$, $11-19$. DOI: 10.1016/j.jda.2006.08.003

35
J.L. Palacios, A resistive upper bound for the ABC index, MATCH Communications in Mathematical and in Computer Chemistry, $\textbf{72}(2014)$, $709-713$.

36
M. Randić, On Characterization of molecular branching, J. Amer. Chem. Soc., $\textbf{97}(1975)$, $6609-6615$. DOI: 10.1021/ja00856a001

37
N.K. Raut, Degree based topological indices of Isomers of organic compounds, International Journal of Scientific and Research Publications, $\bf {4}$(8) (2014), 456-461.

38
D.Vukiĉevic, B.Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges. J. Math. Chem. $\bf {46}$(4) (2009), 1369–1376. doi:10.1007/s10910-009-9520-x

39
H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc., $\textbf{69(1)}, (1947)$, $17-20$. DOI: 10.1021/ja01193a005

40
B. Zhou, I. Gutman, Further properties of Zagreb indices, MATCH Communications in Mathematical and in Computer Chemistry, $\textbf{54}(2005)$ 233-239.

How to Cite?

DOI: 10.12732/ijpam.v115i2.17 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 115
Issue: 2
Pages: 405 - 418


$HAC_5C_6C_7[P,Q]$ NANOTUBE%22&as_occt=any&as_epq=&as_oq=&as_eq=&as_publication=&as_ylo=&as_yhi=&as_sdtAAP=1&as_sdtp=1" title="Click to search Google Scholar for this entry" rel="nofollow">Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).