IJPAM: Volume 115, No. 2 (2017)
Title
THE EDGE VERSION OF RANDIĆ, ZAGREB, ATOMBOND CONNECTIVITY AND GEOMETRIC-ARITHMETIC
INDICES OF
![$HAC_5C_6C_7[P,Q]$](img1.png)
Authors
Yingying Gao

Abdul Qudair Baig



Chengdu University
Chengdu, 610106, P.R. CHINA

University of Sargodha
Mandi Bahauddin Campus
Mandi Bahauddin, PAKISTAN

COMSATS Institute of Information Technology
Attock Campus, PAKISTAN

Iran University of Science and Technology (IUST)
Narmak, Tehran, 16844, IRAN
Abstract
Let





In this paper we consider the line graph of
nanotube for
and
and we compute the edge version
of Randić, Zagreb, Atom Bond Connectivity its fourth version
and Geometric-arithmetic index with its fifth version.
History
Received: March 30, 2017
Revised: June 29, 2017
Published: July 14, 2017
AMS Classification, Key Words
AMS Subject Classification: 05C12, 05C90
Key Words and Phrases: general Randić index, Zagreb index, atom-bond connectivity index, geometric-arithmetic index, nanotubes
Download Section
Download paper from here.You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.
Bibliography
- 1
-
M. Ba
a, J. Horv
thov
, M. Mokri
ov
, A. Suh
nyiov
, On topological indices of fullerenes, Appl. Math. Comput.
,
. DOI: 10.1016/j.amc.2014.11.069
- 2
-
A. Q. Baig, M. Imran, H. Ali, On Topological Indices of Poly
Oxide, Poly Silicate, DOX and DSL Networks, Can. J. Chem.
,
. DOI: 10.1139/cjc-2014-0490
- 3
- B. Bollobas, P. Erdos, Graphs of extremal weights, Ars Combin. 50 (1998),225-233.
- 4
-
M. Deza, P.W. Fowler, A. Rassat, K.M. Rogers, Fullerenes as tiling
of surfaces, J. Chem. Inf. Comput. Sci.
. DOI: 10.1021/ci990066h
- 5
-
M.V. Diudea, I. Gutman, J. Lorentz, Molecular Topology, Nova,
Huntington,
- 6
-
E. Estrada, L. Torres, L. Rodriguez and I. Gutman, An Atom-Bond
Connectivity Index: Modelling the Enthalpy of Formation of
Alkanes. Indian J. Chem.
,
.
- 7
- M. Essalih, M. Marraki, G. Hagri, Calculation of Some Topological Indices of Graphs, Journal of Theoretical and Applied Information Technology, 30(2), (2011), 122-127.
- 8
- M.R. Farahani, The edge version of atom bond connectivity index of connected graph, Acta Universitatis Apulensis, 36 (2013), 277-284.
- 9
-
M.R. Farahani, Fourth Atom-bond connectivity index of an infinite
class of Nanostar Dendrimer
, Journal of Advances in Chemistry, 4(1), (2013), 301-305.
- 10
- M.R. Farahani, M.R. Kanna, Generalized Zagreb index of V-Phenylenic nanotubes and nanotori, Journal of chemical and pharamaceutical research, 7(11), (2015), 241-245.
- 11
- M.R. Farahani. The First And Second Zagreb Indices, First And Second Zagreb Polynomials
Of
And
Nanotubes, Int. J. Nanosci. Nanotechnol., 8(3), Sep. (2012), 175-180.
- 12
- M.R. Farahani. On the Randić and sum-connectivity index of some graphs. Algebras, Goups and Geometries. 29(4), 2012, 415-422. DOI 10.1112/S0010437X08003710.
- 13
- M.R. Farahani. Atom Bond Connectivity And Geometric-Arithmetic Indices Of
Nanotube, International Journal of Chemical Modeling. 5(1), 127-132, (2013).
- 14
- M.R. Farahani. The Atom Bond connectivity ABC and Geometric-Arithmetic GA Indices of Pent-Heptagonal Nanotube. Pacific Journal of Applied Mathematics. 7(1), 2015, In press
- 15
- M.R. Farahani. Zagreb indices and Zagreb Polynomials of Pent-Heptagon Nanotube
. Chemical Physics Research Journal. 6(1), 35-40, (2013).
- 16
- M.R. Farahani. Connectivity Indices of Pent-Heptagonal Nanotubes
. Advances in Materials and Corrosion. 2, (2013), 33-35.
- 17
- M.R. Farahani. First and Second Zagreb polynomials of
and
nanotubes. International Letters of Chemistry, Physics and Astronomy. 12(2), (2014), 56-62.
- 18
- M.R. Farahani. On the Randić and sum-connectivity index of Nanotubes. Annals of West University of Timisoara-Mathematics and Computer Science. 51(2), (2013), 39-46. DOI: https://doi.org/10.2478/awutm-2013-0014
- 19
- M.R. Farahani. On The Geometric-Arithmetic And Atom Bond Connectivity Index Of
Nanotube. Chemical Physics Research Journal. 6(1),21-26, (2013).
- 20
-
M. Ghorbani, M.A. Hosseinzadeh, Computing
index of nanostar dendrimers, Optoelectron. Adv. Mater. Rapid Commun,
,
.
- 21
-
A. Graovac, M. Ghorbani, M. A. Hosseinzadeh, Computing fifth
geometric-arithmetic index for nanostar dendrimers, J. Math.
Nanosci.
,
.
- 22
-
I. Gutman, N. Trinajstic Graph theory and molecular orbitals.
Total
-electron energy of alternant hydrocarbons, Chem, Phys. Lett. 17, (1972) 535-538. DOI: 10.1016/0009-2614(72)85099-1
- 23
-
I. Gutman, O.E. Polansky, Mathematical concepts in organic
chemistry, Springer-Verlag, New York,
.
- 24
- I. Gutmasn, Edge-decomposition of topological indices, Iranian Journal of Mathematical Chemistry, 6(2), (2015), 103-108.
- 25
-
S. Hayat, M. Imran, Computation of certain topological indices of
nanotubes, J. Comput. Theor. Nanosci.
,
. DOI: 10.1166/jctn.2015.3699
- 26
-
S. Hayat, M. Imran, Computation of certain topological indices of
nanotubes covered by
and
, J. Comput. Theor. Nanosci. 12(4), (2015), 533-541. DOI: 10.1166/jctn.2015.3761
- 27
-
S. Hayat, M. Imran, On some degree based topological indices of
certain nanotubes, J. Comput. Theor. Nanosci.
, 1599-1605. DOI: https://doi.org/10.1166/jctn.2015.3935
- 28
-
S. Hayat, M. Imran, Computation of topological indices of certain
networks, Appl. Math. Comput.
,
DOI: 10.1016/j.amc.2014.04.091
- 29
- M. Imran, A. Q. Baig, H. Ali, S. U. Rehman, On Topological properties of poly honeycomb networks. Periodica Mathematica Hungaric. 73(1) (2016), 100-119. DOI: 10.1007/s10998-016-0132-5
- 30
-
A. Iranmanesh, M. Zeraatkar, Computing GA index for some nanotubes, Optoelectron. Adv. Mater. Rapid Commun.
,
.
- 31
- M.K. Jamil, A. Javed, W. Nazeer, M.R. Farahani, Y.Y. Gao. Four Vertex-Degree-Based Topological Indices of
Nanotubes. Communications in Mathematics and Applications. 2017, In press.
- 32
- Y. Li, L. Yan, M.K. Jamil, M.R. Farahani, W. Gao, J.B. Liu. Four New/Old Vertex-Degree-Based Topological Indices of
and
Nanotubes. Journal of Computational and Theoretical Nanoscience. 14(1), 2017, 796-799. DOI: https://doi.org/10.1166/jctn.2017.6275
- 33
-
W. Lin, J. Chen, Q. Chen, T. Gao, X. Lin, B. Cai, Fast computer
search for trees with minimal ABC index based on tree degree
sequences, MATCH Communications in Mathematical and in Computer
Chemistry
,
.
- 34
-
P. D. Manuel, M. I. Abd-El-Barr, I. Rajasingh, B. Rajan, An
efficient representation of Benes networks and its applications,
Journal of Discrete Algorithms,
,
. DOI: 10.1016/j.jda.2006.08.003
- 35
-
J.L. Palacios, A resistive upper bound for the ABC index, MATCH
Communications in Mathematical and in Computer Chemistry,
,
.
- 36
-
M. Randić, On Characterization of molecular branching, J.
Amer. Chem. Soc.,
,
. DOI: 10.1021/ja00856a001
- 37
-
N.K. Raut, Degree based topological indices of Isomers of organic
compounds, International Journal of Scientific and Research
Publications,
(8) (2014), 456-461.
- 38
-
D.Vukiĉevic, B.Furtula, Topological index based on the
ratios of geometrical and arithmetical means of end-vertex degrees
of edges. J. Math. Chem.
(4) (2009), 1369–1376. doi:10.1007/s10910-009-9520-x
- 39
-
H. Wiener, Structural determination of paraffin boiling points, J.
Amer. Chem. Soc.,
,
. DOI: 10.1021/ja01193a005
- 40
-
B. Zhou, I. Gutman, Further properties of Zagreb indices, MATCH
Communications in Mathematical and in Computer Chemistry,
233-239.
How to Cite?
DOI: 10.12732/ijpam.v115i2.17 How to cite this paper?Source: International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 115
Issue: 2
Pages: 405 - 418
NANOTUBE%22&as_occt=any&as_epq=&as_oq=&as_eq=&as_publication=&as_ylo=&as_yhi=&as_sdtAAP=1&as_sdtp=1" title="Click to search Google Scholar for this entry" rel="nofollow">Google Scholar;
DOI (International DOI Foundation);
WorldCAT.
This work is licensed under the Creative Commons Attribution International License (CC BY).