IJPAM: Volume 115, No. 2 (2017)

Title

ON $(m,n)$-JORDAN $*$-DERIVATIONS
AND RELATED MAPPINGS IN RINGS WITH INVOLUTION

Authors

Husain Alhazmi$^1$, Shakir Ali$^2$, Mohammad Salahuddin Khan$^3$
$^{1,2}$Department of Mathematics
Faculty of Science
King Abdulaziz University
Jeddah, 21589, SAUDI ARABIA
$^3$Department of Applied Mathematics
Aligarh Muslim University
Aligarh, 202002, INDIA

Abstract

The aim of the present paper is to introduce the notions of $(m,n)~*$-derivations and $(m,n)$-Jordan $*$-derivations, and to prove some related results in rings with involution. In particular, we prove that if $(m+n+1)!$-torsion free $*$-ring $R$ admits an additive mapping $d:R\to R$ such that $d(x^{m+n+1})=(m+n+1)x^nd(x)(x^*)^m$ for all $x\in R,$ then $d$ is an $(m,n)$-Jordan $*$-derivation on $R,$ where $m\geq 0,~n\geq0$ with $m+n\neq0$ are some fixed integers. Further, we prove that if $R$ is an $(n+1)!$-torsion free, then an additive mapping $T$ satisfies $T(x^{n+1})=T(x)(x^*)^{n}$ for all $x\in R$ must be a Jordan left $*$-centralizer. As an application, Jordan left $*$-centralizers are characterized.

History

Received: November 16, 2017
Revised: May 1, 2017
Published: July 14, 2017

AMS Classification, Key Words

AMS Subject Classification: 16W10, 16W25, 16N60
Key Words and Phrases: involution, torsion free ring, $*$-ring, semiprime $*$-ring, $(m,n)$-Jordan $*$-derivation, Jordan left $*$-centralizer

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
S. Ali, On generalized $*$-derivation in $*$-rings, Palest. J. Math., 1 (2012), no. 1, 32-37.

2
S. Ali, A. Fošner, On generalized $(m,n)$-derivations and generalized $(m,n)$-Jordan derivations in rings, Algebra Colloq., 21 (2014), no. 3, 411-420.

3
S. Ali, N. A. Dar, J. Vukman, Jordan left *-centralizers of prime and semiprime rings with involution, Beitr. Algebra Geom., 54 (2013), no. 2, 609-624.

4
K. I. Beidar, W. S. Martindale III, A. V. Mikhalev, Rings with generalized identities, Marcel Dekker, Inc., New York, 1996.

5
M. Brešar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc., 104 (1988), no. 4, 1003-1006.

6
M. Brešar, J. Vukman, On some additive mappings in rings with involution, Aequationes Math., 38 (1989), no. 2-3, 178-185.

7
M. Brešar, J. Vukman, On left derivations and related mappings, Proc. Amer. Math. Soc., 110 (1990), no. 1, 7-16.

8
M. Brešar, B. Zalar, On the structure of Jordan $*$-derivations, Colloq. Math., 63 (1992), no. 2, 163-171.

9
D. Bridges, J. Bergen, On the derivation of $x\sp{n}$ in a ring, Proc. Amer. Math. Soc., 90 (1984), no. 1, 25-29.

10
R. C. Busby, Double centralizers and extensions of $C\sp{\ast}$-algebras, Trans. Amer. Math. Soc. 132 (1968), 79-99.

11
I. N. Herstein, Rings with involution, The Univ. of Chicago Press, Chicago 1976.

12
P. Šemrl, On Jordan $*$-derivations and an application, Colloq. Math., 59 (1990), no. 2, 241-251.

13
P. Šemrl, Quadratic functionals and Jordan $*$-derivations, Studia Math., 97 (1991), no. 3, 157-165.

14
J. Vukman, A note on Jordan $*$-derivations in semiprime rings with involution, Int. Math. Forum, 1 (2006), no. 13-16, 617-622.

15
J. Vukman, On $(m,n)$-Jordan derivations and commutativity of prime rings, Demonstratio Math., 41 (2008), no. 4, 773-778.

16
J. Vukman, I. Kosi-Ulbl, On some equations related to derivations in rings, Int. J. Math. Math. Sci. (2005), no. 17, 2703-2710.

17
J. Vukman, I. Kosi-Ulbl, A note on derivations in semiprime rings, Int. J. Math. Math. Sci. (2005), no. 20, 3347-3350.

18
B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolin., 32 (1991), no. 4, 609-614.

19
B. Zalar, Jordan $\ast$-derivation pairs and quadratic functionals on modules over $\ast$-rings, Aequationes Math., 54 (1997), no. 1-2, 31-43.

How to Cite?

DOI: 10.12732/ijpam.v115i2.19 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 115
Issue: 2
Pages: 445 - 453


$(m,n)$-JORDAN $*$-DERIVATIONS AND RELATED MAPPINGS IN RINGS WITH INVOLUTION%22&as_occt=any&as_epq=&as_oq=&as_eq=&as_publication=&as_ylo=&as_yhi=&as_sdtAAP=1&as_sdtp=1" title="Click to search Google Scholar for this entry" rel="nofollow">Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).