IJPAM: Volume 115, No. 2 (2017)
Title
FUZZY NORMAL CONGRUENCES ANDFUZZY COSET RELATIONS ON GROUPS
Authors
S. Khosravi ShoarDepartment of Mathematics
Fasa University
Fasa, IRAN
Abstract
The aim of this work is to introduce the concept of a fuzzy normal congruence on a group and illustrate this subject by some examples. We also introduce the concept of a fuzzy coset relation on a group and define a natural composition between two fuzzy coset relations and by this operation we prove that the set of all fuzzy coset relations is a group.History
Received: October 24, 2016
Revised: April 10, 2017
Published: July 14, 2017
AMS Classification, Key Words
AMS Subject Classification: 03E72, 20N25
Key Words and Phrases: fuzzy relation, fuzzy congruence, fuzzy normal congruence, fuzzy coset relation
Download Section
Download paper from here.You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.
Bibliography
- 1
- S. Abou-Zaid, On fuzzy subgroups, Fuzzy Sets Systems, 55 (1988), 237-240, doi: https://doi.org/10.1016/0165-0114(93)90137-7.
- 2
- M.K. Chakraborty, M. Das, Reduction of fuzzy strict order relations, Fuzzy Sets and Systems, 15 (1985), 33-44, doi: https://doi.org/10.1016/0165-0114(85)90014-4.
- 3
- J.P. Kim, D.R. Bae, Fuzzy congruences in groups, Fuzzy Sets Systems, 85 (1997), 115-120, doi: https://doi.org/10.1016/0165-0114(95)00334-7.
- 4
- N. Kuroki, Fuzzy congruences and fuzzy normal subgroups, Inform. Sci., 60 (1992) 247-259, doi: https://doi.org/10.1016/0020-0255(92)90013-X.
- 5
- N.P. Mukherjee, Fuzzy normal subgroups and fuzzy cosets, Inform. Sci. 34 (1984), 225-239, doi: https://doi.org/10.1016/0020-0255(84)90050-1.
- 6
- V. Murali, Fuzzy equivalence relations, Fuzzy Sets and Systems, 30, No. 2 (1989), 155-163, doi: https://doi.org/10.1016/0165-0114(89)90077-8.
- 7
- A. Rosenfeld, Fuzzy Groups, Journal of Mathematical Analysis and Applications, 35 (1971), 512-517, doi: https://doi.org/10.1016/0022-247X(71)90199-5.
- 8
- M.A. Samhan, T.M.G. Ahsanullah, Fuzzy congruence on groups and rings, Int. J. Math. and Math. Sci., 17 (1994), 469-474, doi: https://doi.org/10.1155/S0161171294000682.
- 9
- M. Samhan, Fuzzy congruence in semigroups, Inform. Sci., 74 (1993), 165-175, doi: https://doi.org/10.1016/0020-0255(93)90132-6.
- 10
- X.-Y. Xie, Fuzzy Rees congruences on semigroups, Fuzzy Sets and Systems, 102 (1999), 353-359, doi: https://doi.org/10.1016/S0165-0114(97)00156-5.
- 11
- L.A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353, doi: https://doi.org/10.1016/S0019-9958(65)90241-X.
How to Cite?
DOI: 10.12732/ijpam.v115i2.2 How to cite this paper?Source: International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 115
Issue: 2
Pages: 211 - 224
Google Scholar; DOI (International DOI Foundation); WorldCAT.
This work is licensed under the Creative Commons Attribution International License (CC BY).