IJPAM: Volume 115, No. 2 (2017)

Title

SECOND LAW ANALYSIS FOR A POROUS CHANNEL FLOW
WITH ASYMMETRIC SLIP AND CONVECTIVE
BOUNDARY CONDITIONS

Authors

J.A. Falade$^1$, S.O. Adesanya$^2$, S.R. Lebelo$^3$, S.O. Kareem$^4$
$^{1,4}$Department of Physical Sciences
Redeemer's University
Ede, NIGERIA
$^2$Department of Mathematical Sciences
Redeemer's University
Ede, NIGERIA
$^{2,3}$Department of Mathematics
Vaal University of Technology
Vanderbijlpark 1911, SOUTH AFRICA

Abstract

The present work addresses the entropy generation in the flow of an incompressible viscous fluid through porous parallel walls subjected to asymmetric slip and convective heating conditions. The differential equations for momentum and energy are formulated, made dimensionless, solved and used to compute the entropy generation rate in the flow channel. The effect of various physical parameters on the velocity, temperature and entropy generation profiles are presented graphically and discussed.

History

Received: December 11, 2016
Revised: May 21, 2017
Published: July 14, 2017

AMS Classification, Key Words

AMS Subject Classification: 76D05, 35Q30
Key Words and Phrases: asymmetric slip flow, asymmetric convective heating, entropy generation, irreversibility ratio, suction/injection, Poiseuille flow

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
A. Bejan and S. Lorente.
The constructal law of design and evolution in nature.
Phil. Trans. R. Soc. B, 365:1335-1347, 2010.

2
A. Bejan.
Method of entropy generation minimization, or modeling and optimization based on combined heat transfer and thermodynamics.
Revue Générale de Thermique, 35:637-646, 1996.

3
U. Lucia.
Stationary open systems: A brief review on contemporary theories on irreversibility.
Physica A, 392:1051-1062, 2013.

4
U. Lucia.
Maximum or minimum entropy generation for open systems.
Physica A, 291:3392-3398, 2012.

5
A. O. Ajibade, B. K. Jha, and A. Omame.
Entropy generation under the effect of suction/injection.
Applied Mathematical modeling, 35:4630-4646, 2011.

6
S. H. Tasnim, M. Shohel, and M. A. H. Mamun.
Entropy generation in a porous channel with hydrodynamic effect.
Exergy, An international Journal, 2(4):300-308, 2002.

7
K. Hooman and A. Ejlali.
Entropy generation for forced convection in a porous saturated circular tube with uniform wall temperature.
International communication in Heat and Mass transfer, 34(4):408-419, 2007.

8
A. S. Eegunjobi and O. D. Makinde.
Combined effect of buoyancy force and navier slip on entropy generation in a vertical porous channel.
Entropy, 14:1028-1040, 2012.

9
A. Yildirim and S. A. Sezer.
Effects of partial slip on the peristaltic flow of a mhd newtonian fluid in an asymmetric channel.
Mathematical and Computer Modelling, 52:618-625, 2010.

10
S. Das, A. S. Banu, R. N. Jana, and O. D. Makinde.
Entropy analysis on mhd pseudo-plastic nanofluid flow through a vertical porous channel with convective heating.
Alexandria Engineering Journal, 54(3):325 - 337, 2015.

11
T. Chinyoka and O. D. Makinde.
Analysis of entropy generation rate in an unsteady porous channel flow with navier slip and convective cooling.
Entropy, 15:2081-2099, 2013.

12
S. Das and R. N. Jana.
Entropy generation due to mhd flow in a porous channel with navier slip.
Ain Shams Engineering Journal, 5:575-584, 2015.

13
S. O. Adesanya, and O. D. Makinde.
Entropy generation in couple stress fluid flow through porous channel with fluid slippage.
International Journal of Exergy, 15(3):344 - 362, 2014.

14
S. O. Adesanya, and O. D. Makinde.
Effects of couple stresses on entropy generation rate in a porous channel with convective heating.
Computational and Applied Mathematics, 34:293-307, 2015.

15
S. O. Adesanya, and O. D. Makinde.
Irreversibility analysis in a couple stress film flow along an inclined heated plate with adiabatic free surface.
Physica A: Statistical Mechanics and its Application, 432:222-229, 2015.

16
T. Hayat, S. Hina, and N. Ali.
Simultaneous effects of slip and heat transfer on the peristaltic flow.
Commun Nonlinear Sci Numer Simulat, 15:1526-1537, 2010.

17
T. Hayat, Q Hussain, M. U. Qureshi, N. Ali, and A. A. Hendi.
Influence of slip condition on the peristaltic transport in an asymmetric channel with heat transfer: An exact solution.
International Journal for Numerical Methods in Fluids, 63:1944-1959, 2011.

18
L. Zheng, J. Niu, X. Zhang, and Y. Gao.
MHD flow and heat transfer over a porous shrinking surface with velocity slip and temperature jump.
Mathematical and Computer Modelling, 56:133-144, 2012.

19
O. M. Haddad, M. M. Abuzaid, and M. A. Al-Nimr.
Developing free convection gas flow in a vertical open-ended micro-channel filled with a porous media.
Numerical heat transfer, Part A: Applications, 48:693-710, 2005.

20
O. M. Haddad, M. A. Al-Nimir, and J. S. Al-Omary.
Forced convection of gaseous slip flow in porous microchannel under local thermal non-equilibrum conditions.
Transport in porous media, 67:453-471, 2007.

21
K. Hooman, F. Hooman, and Famouri M.
Scaling effects for flows in micro-channels: variable property, viscous heating, velocity slip and temperature jump.
International communications in heat and mass transfer, 36:192-196, 2009.

22
S. Chen.
Lattice boltzmann method for slip ?ow heat transfer in circular microtubes: Extended graetz problem.
Applied Mathematics and Computation, 217:3314-3320, 2010.

How to Cite?

DOI: 10.12732/ijpam.v115i2.4 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 115
Issue: 2
Pages: 247 - 257


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).