IJPAM: Volume 115, No. 2 (2017)

Title

$FI$-SEMISIMPLE, $FI-t$-SEMISIMPLE
AND STRONGLY $FI-t$-SEMISIMPLE MODULES

Authors

Inaam Mohammed Ali Hadi$^1$, Farhan Dakhil Shyaa$^2$
$^1$Department of Mathematics University of Baghdad
College of Education for Pure Sciences (Ibn-Al-Haitham)
University of Baghdad
Baghdad, IRAQ
$^2$Department of Mathematics University of Al-Qadisiyah
College of Education
Al-Qadisiya, IRAQ

Abstract

In this paper, we introduce the notions of $FI$-semisimple, $FI$-t-semisimple and strongly $FI$-t-semisimple modules. This is a generalization of semisimple modules. Many results connected with these concepts are given.

History

Received: January 3, 2017
Revised: April 3, 2017
Published: July 14, 2017

AMS Classification, Key Words

AMS Subject Classification: 16D10, 16D70, 16D90, 16P70
Key Words and Phrases: FI-semisimple modules, FI-t-semisimple modules, strongly FI-t-semisimple modules, t-semisimple modules

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
M.S. Abas, On Fully Stable Modules, Ph.D. Thesis, College of Science, University of Baghdad, 1991.

2
F.W. Anderson, K.R. Fuller, Rings and Categories of Modules, Second Edition, Graduate Texts in Math., Volume 13, Springer-Verlag, Berlin-Heidelberg-New York, 1992.

3
Sh. Asgari, A. Haghany, t-Extending modules and t-Baer modules, Comm. Algebra, 39 (2011), 1605-1623.

4
Sh. Asgari, A. Haghany, Y. Tolooei, T-semisimple modules and T-semisimple rings comm, Algebra, 41, No. 5 (2013), 1882-1902.

5
Sh. Asgri, A. Haghany, Densely co-Hopfian modules, Journal of Algebra and its Aplications, 9 (2010), 989-1000.

6
Sh. Asgari, A. Haghany, Generalizations of t-extending modules relative to fully invariant submodules, J. Korean Math. Soc., 49 (2012), 503-514.

7
G. F. Birkenmeier, J.K. Park, S.T. Rizvi, Modules with fully invariant submodules essential in fully invariant summands, Comm. Algebra, 30, No. 4 (2002), 1833-1852.

8
J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting Modules, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2006.

9
N.V. Dung, D.V. Huynh, P.F Smith, R. Wisbauer, Extending Modules, Pitman Research Notes in Mathematics, 313, Longman, Harlow, 1994.

10
Z.A. El-Bast, P.F. Smith, Multiplication modules, Comm. Algebra, 16 (1988), 755-779.

11
K.R. Goodearl, Ring Theory, Non Singular Rings and Modules, Marcel Dekker, Inc. New York-Basel, 1976.

12
Kasch, Modules and Rings, Acad. Press, London, 1982.

13
S.H. Mohamed, B.J. Muller, Continuous and Discrete Modules, Cambridge University Press, Cambridge, 1990.

14
Patrick F. Smith, Fully invariant multiplication modules, Palestine Journal of Mathematics, 4 (2015), 462-470.

How to Cite?

DOI: 10.12732/ijpam.v115i2.7 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 115
Issue: 2
Pages: 285 - 300


$FI$-SEMISIMPLE, $FI-t$-SEMISIMPLE AND STRONGLY $FI-t$-SEMISIMPLE MODULES%22&as_occt=any&as_epq=&as_oq=&as_eq=&as_publication=&as_ylo=&as_yhi=&as_sdtAAP=1&as_sdtp=1" title="Click to search Google Scholar for this entry" rel="nofollow">Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).