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Abstract: Several mathematical formulations of physical phenomena under uncertainty

contain fuzzy integro-differential equations and due to their frequent appearance in several

applied fields, an appropriate method for handling them is presented. Our proposed algorithm

is given in detail and it can be treated as the extended form of homotopy perturbation method.

We use an accelerating parameter to enhance the rate of convergence of the solution and

construction of suitable homotopy facilitates the calculation of approximate solution in the

form of convergent series with simple computable components.
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1. Introduction

Many real world problems are described by fuzzy integral and fuzzy integrod-
ifferential equations, which are helpful in studying the observability of dynam-
ical control systems. Also various initial and boundary value problems of or-
dinary differential equations and partial differential equations are associated
with them. This is the main reason to study these equations extensively. In
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fact, obtaining the exact solutions of such equations is not possible in all cases
because of inherited restrictions form application of fuzzy concepts in these
problems. In order to model the dynamical systems under uncertainty, we need
to use the idea of fuzzy sets which was introduced by Zadeh in [11]. Later
Dubois and Prade in [2] presented an elementary fuzzy calculus based on the
extension principle. Alternative approaches were suggested by Goetschel and
Voxman in [4], Kaleva in [7] and others. The fuzzy integral equations and fuzzy
differential equations are the most important fields of fuzzy set theory. In re-
cent years various authors have been focusing on the advanced and efficient
methods for solving fuzzy intergo-differential equations and therefore investi-
gating solution of them with high accuracy is of center of interest to many
researchers. Among these techniques, homotopy perturbation method (HPM)
is the most transparent methods of solution of them because it provide imme-
diate as well as convergent series and in most cases only few iterations leads to
highly accurate solutions. The HPM proposed by He (see [5], [6]) for solving
integro-diferential equations (see [3], [9], [10]), linear and nonlinear has been
the subject of extensive analytical and numerical studies. The method is a cou-
pling of the traditional perturbation method and homotopy in topology which
deforms to a simple problem that can be easily solved. Our proposed method
can be considered as an extended form of HPM which uses an accelerating pa-
rameter to enhance the rate of convergence of solutions of linear fuzzy Fredholm
integro-differential equation (FFIDE) of the form

F̃ ′ = q̃(x)F̃ (x) + λ

b∫

a

k(x, t)F̃ (t)dt+ f̃(x), F̃ (x0) = X0 (1)

where λ > 0, a and b are constants, k(x, t) is an arbitrary kernel function and
is continuous over the square a ≤ x, t ≤ b and f(x) is a function of a ≤ x ≤ b.
Here we utilize the parametric forms of fuzzy functions.

2. Homotopy Perturbation Method

To illustrate the basic idea of homotopy perturbation method (see [8]), we
consider the following nonlinear integral equation

A(u)− f(r) = 0, r ∈ Ω, (2)

with boundary conditions B(u, ∂u
∂n

) = 0, r ∈ Γ, where A is an integral operator,
B is a boundary operator, Ω is the boundary of the domain Ω and f(r) is a



AN APPROPRIATE METHOD TO HANDLE... 541

known analytic function. Generally speaking, the operator A can be divided
into two parts L andN , where L is a linear and N is a nonlinear operator.
equation (2) can be rewritten as L(u) +N(U)− f(r) = 0.

In order to use the HPM, a suitable construction of homotopy is of vital im-
portance. If L(u) = 0 with some possible unknown parameter can best describe
the original nonlinear system. In general, a homotopy can be constructed as
(see [5], [6])

H(U, p) = (1− p)[L(U)− L(u0)] + p[L(U) +N(U)− f(r)] = 0 (3)

or equivalently

H(U, p) = L(U)− L(u0) + p[L(u0) +N(U)− f(r)] = 0, (4)

where u0 is an initial approximation of equation (2), p[0, 1] and r ∈ Ω. It is
obvious that

H(U, 0) = L(U)− L(u0) = 0, H(U, 1) = A(u)− f(r) (5)

and this deformation is called homotopy in topology. In this method, using the
homotopy parameter p, we have the following power series representation for
U , which is the solution of equation (2) or equation (4) where 0 ≤ p ≤ 1

u = u0 + p1u1 + p2u2 + . . . (6)

The approximation can be obtained by setting p=1, i.e.

U = lim
p→1

u =

∞∑

n=0

un = u0 + u1 + u2 + . . . (7)

The above series is convergent for most cases, see [6].

3. Proposed Algorithm for Solving

Fuzzy Integro-Differential Equations

One of our main aims is to present an efficient method to solve linear fuzzy
integro-differential equation ( equation 1) and can be treated as an extended
form of homotopy perturbation method, in which we use the accelerating pa-
rameter to enhance the rate of convergence of HPM applied to linear fuzzy inte-
gral equations of the second kind with the kernels of the form

∑N
i=0 gi(x)hi(t).

Then define new convex homotopy perturbation as follows

H(u, p,m) = (1− p)F (u) + pL(u) + p(1− p)

[
N∑

i=0

migi(x)

]
= 0 (8)
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where m = [mi] and, i = 1, 2, 3, . . . , N are called accelerating parameter for
mi = 0. Now we define

H(u, p, 0) = H(u, p), (9)

which is the standard HPM. It is easy to verify that the solutions of H(u0, 0)
and H(γ, 1) also satisfy the equation (8). To achieve our goal, we consider the
linear fuzzy Fredholm integro-differential equation of the second kind as given
in equation (1) with the solution that F̃ (x) = ũ(x), As the parametric forms of
fuzzy functions are considered, we have f(x) = (f(x, α), f (x, α)).

Particular case: Consider the particular case, in which kernel function is
of the form

(k(x, t), k(x, t)) = (g(x)h(t), g(x)h(t)) (10)

We consider equation (8) as follows

H(u, p,m) =





(1− p)Fu+ pL(u) + p(1− p)[mg(x)] = 0,

(1− p)Fu+ pL(u) + p(1− p)[mg(x)] = 0,
(11)

where

(F (u), F (u)) =





u′(x, α) − q(x, α)u(x, α) − f(x, α),

u′(x, α) − q(x, α)u(x, α) − f(x, α),
(12)

(L(u), L(u)) =




u′(x, α) − q(x, α)u(x, α) − f(x, α) −

∫ b

a

g(x)h(t)u(t, α)dt = 0

u′(x, α) − q(x, α)u(x, α) − f(x, α) −

∫ b

a

g(x)h(t)u(t, α)dt = 0

(13)

Hence we can write

(1− p)(u′(x, α) − q(x, α)u(x, α)− f(x, α)) + p(u′(x, α) − q(x, α)u(x, α)

−

∫ b

a

g(x)h(t)u(t, α)dt− f(x, α)) +mp(1− p)g(x) = 0

(1− p)(u′(x, α) − q(x, α)u(x, α)− f(x, α)) + p(u′(x, α) − q(x, α)u(x, α)

−

∫ b

a

g(x)h(t)u(t, α)dt− f(x, α)) +mp(1− p)g(x) = 0

(14)
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or equivalently

u′(x, α)− q(x, α)u(x, α) − f(x, α) + pg(x)

∫ b

a

h(t)u(t, α)dt

+mpg(x) +m2pg(x) = 0

u′(x, α)− q(x, α)u(x, α) − f(x, α) + pg(x)

∫ b

a

h(t)u(t, α)dt

+mpg(x) +m2pg(x) = 0

(15)

Substitute equation (6) in equation (15) and comparing the terms with like
powers of p and we obtain

p0 :=





u′0(x, α)− q(x, α)u0(x, α) − f(x, α) = 0, u0(0) = X0(0)

u′0(x, α)− q(x, α)u0(x, α) − f(x, α) = 0, u0(0) = X0(0)
(16)

and its solution is




u0(x, α) = e
∫ b

a
q(y,α)dy

∫ x

a

e−
∫ t

a
q(y,α)dyf(t, α)dt

u0(x, α) = e
∫ b

a
q(y,α)dy

∫ x

a

e−
∫ t

a
q(y,α)dyf(t, α)dt

(17)

p1 :





u′1(x, α) = q(x, α)u1(x, α) + g(x)

∫ b

a

h(t)u0(t, α)dt−mg(x),

u1(0) = 0

u′1(x, α) = q(x, α)u1(x, α) + g(x)

∫ b

a

h(t)u0(t, α)dt−mg(x) = 0,

u1(0)

(18)

Assume

(c, c) =





∫ b

a

h(t)u0(t, α)dt

∫ b

a

h(t)u0(t, α)dt

(19)

which results in




u1(x, α) = (c−m)e
∫ x

a
q(y,α)dy

∫ x

a

e−
∫ t

a
q(y,α)dyg(t)dt

u1(x, α) = (c−m)e
∫ x

a
q(y,α)dy

∫ x

a

e−
∫ t

a
q(y,α)dyg(t)dt

(20)
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p2 :





u′2(x, α) = q(x, α)u2(x, α) + g(x)
∫ b

a
h(t)u1(t, α)dt+mg(x),

u2(0) = 0

u′2(x, α) = q(x, α)u2(x, α) + g(x)
∫ b

a
h(t)u1(t, α)dt+mg(x),

u2(0) = 0

(21)

Assume

(s, s) =





∫ b

a

h(t)e
∫ t

a
q(y,α)dy

(∫ t

a

e−
∫ z

a
q(y,α)dyg(z)dz

)
dt

∫ b

a

h(t)e
∫ t

a
q(y,α)dy

(∫ t

a

e−
∫ z

a
q(y,α)dyg(z)dz

)
dt

(22)

Hence, we obtain





u2(x, α) = (m+ (c−m)s)e
∫ x

a
q(y,α)dy

∫ x

a

e−
∫ t

a
q(y,α)dyg(t)dt

(u2(x, α) = (m+ (c−m)s)e
∫ x

a
q(y,α)dy

∫ x

a

e−
∫ t

a
q(y,α)dyg(t)dt

(23)

p3 :





u′3(x, α)− q(x, α)u3(x, α) − g(x)

∫ b

a

h(t)u2(t, α)dt = 0,

u3(0) = 0

u′3(x, α)− q(x, α)u3(x, α) − g(x)

∫ b

a

h(t)u2(t, α)dt = 0,

u3(0) = 0

(24)

In general

pn :





u′n(x, α)− q(x, α)un(x, α) − g(x)
∫ b

a
h(t)un−1(t, α)dt = 0,

un(0) = 0

u′n(x, α)− q(x, α)un(x, α) − g(x)
∫ b

a
h(t)un−1(t, α)dt = 0,

un(0) = 0,

(25)

where n = 3, 4, 5, . . . and it results in




un(x, α) =

∫ b

a

h(t)un−1(t, α)dt e
−

∫ x

a
q(y,α)dy

(∫ x

a

e−
∫ t

a
q(y,α)dyg(t)dt

)

un(x, α) =

∫ b

a

h(t)un−1(t, α)dt e
−

∫ x

a
q(y,α)dy

(∫ x

a

e−
∫ t

a
q(y,α)dyg(t)dt

) (26)
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Now we will find the parameters (m,m) such that (u2, u2) = 0,. Then it is
obvious that (u3, u3) = (u4, u4) = . . . = 0. Hence the exact solution is obtained
in the form

(u(x, α), u(x, α)) = (u0(x, α) + u1(x, α), u0(x, α) + u1(x, α)) (27)

Therefore, for all values of x, we have




(m+ (c−m)s) = 0

(m+ (c−m)s) = 0,
(28)

or equivalently

(m,m) =
( cs

s− 1
,

cs

s− 1

)

=





(
∫ b

a
h(t)u0(t,α)dt

)(
∫ b

a
h(t)e

∫ t
a q(y,α)dy

(
∫ t

a
e−

∫ t
a q(y,α)dyg(z)dz

)
dt

)

∫ b

a
h(t)e

∫ t
a q(y,α)dy

(
∫ t

a
e−

∫ t
a q(y,α)dyg(z)dz

)
dt−1(

∫ b

a
h(t)u0(t,α)dt

)(
∫ b

a
h(t)e

∫ t
a q(y,α)dy

(
∫ t

a
e−

∫ t
a q(y,α)dyg(z)dz

)
dt

)

∫ b

a
h(t)e

∫ t
a q(y,α)dy

(
∫ t

a
e−

∫ t
a q(y,α)dyg(z)dz

)
dt−1

(29)

with the condition that




(∫ b

a

h(t)e
∫ t

a
q(y,α)dy

(∫ t

a

e−
∫ t

a
q(y,α)dyg(z)dz

)
dt
)
6= 1

(∫ b

a

h(t)e
∫ t

a
q(y,α)dy

(∫ t

a

e−
∫ t

a
q(y,α)dyg(z)dz

)
dt
)
6= 1

(30)

General case: Let us consider the general case in which kernel is of the
form

(k(x, t), k(x, t)) =
( N∑

i=1

g
i
(x), hi(t),

N∑

i=1

gi(x), hi(t)
)

(31)

In this case, we choose the convex homotopy as

H(u, p,m) =





(1− p)Fu+ pL(u) + p(1− p)
( N∑

i=1

migi(x)
)
= 0

(1− p)Fu+ pL(u) + p(1− p)
( N∑

i=1

migi(x)
)
= 0

(32)
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On using similar computations, we obtain the following results in which equa-
tion (3) and equation (13) is same in this case also, whereas we have

p1 :





u′1(x, α) − q(x, α)u1(x, α) −
∑N

i=1

( ∫ b

a
hi(t)u0(t, α)dt−mi

)
g
i
(x),

u1(0) = 0

u′1(x, α) − q(x, α)u1(x, α) −
∑N

i=1

( ∫ b

a
hi(t)u0(t, α)dt−mi

)
gi(x),

u1(0) = 0

(33)

p2 :





u′2(x, α) − q(x, α)u2(x, α) =
∑N

i=1

(
hi(t)u1(t, α)dt+mi

)
g
i
(x),

u2(0) = 0

u′2(x, α) − q(x, α)u2(x, α) =
∑N

i=1

(
hi(t)u1(t, α)dt+mi

)
gi(x),

u2(0) = 0

(34)

Comparing the co-responding powers of p, we have simliar results for p3

also. Hence we have the following general form

pn :





un(x, α) =

∫ b

a

hi(t)un−1(t, α)dt e
∫ x

a
q(y,α)dy

(∫ x

a

e−
∫ t

a
q(y,α)dyg

i
(t)dt

)

un(x, α) =

∫ b

a

hi(t)un−1(t, α)dt e
∫ x

a
q(y,α)dy

(∫ x

a

e−
∫ t

a
q(y,α)dygi(t)dt

) (35)

where n = 3, 4, 5, . . . and now we find the parameters (mi,mi), i = 1, 2, 3, . . . , N
such that (u2, u2) = 0, it is obvious (u3, u3) = (u4, u4) = . . . = 0. Hence from
equation (40) for every xǫ[a, b],





∫ b

a

hi(t)u1(t, α)dt+mi = 0

∫ b

a

hi(t)u1(t, α)dt+mi = 0

(36)



AN APPROPRIATE METHOD TO HANDLE... 547

Substitute equation (34) in equation (36), we receive




N∑

j=1

(∫ b

a

hj(t)u0(t, α)dt−mj

)

∫ b

a

hi(t)e
−

∫ t

a
q(y,α)dy

(∫ x

a

e−
∫ t

a
q(y,α)dyg

i
(z)dz

)
+mi = 0

N∑

j=1

(∫ b

a

hj(t)u0(t, α)dt−mj

)

∫ b

a

hi(t)e
−

∫ t

a
q(y,α)dy

(∫ x

a

e−
∫ t

a
q(y,α)dygi(z)dz

)
+mi = 0

(37)

Let us set




cj =

∫ b

a

hj(t)u0(t, α)dt

cj =

∫ b

a

hj(t)u0(t, α)dt

(38)





bj =

∫ b

a

hi(t)e
∫ t

a
q(y,α)dy

(∫ t

a

e−
∫ z

a
q(y,α)dyg

j
(z)dz

)

bj =

∫ b

a

hi(t)e
∫ t

a
q(y,α)dy

(∫ t

a

e−
∫ z

a
q(y,α)dygj(z)dz

) (39)

Then, we recceive




N∑

j=1

bij(cj −mj) +mi = 0

N∑

j=1

bij(cj −mj) +mi = 0

(40)

The value of the accelerating parameter (mi,mi), i = 1, 2, 3, . . . , N can be found
under certain condition, from the system of linear equations in equation (47).
Let us assume the matrix as (A,A) = (bij, bij) and the vectors as (m,m) =
(mj ,mj) and (c, c) = (cj, cj). Thus from equation (47), we can write ((A −

I)m, (A−I)m) = (Ac,Ac), where (I, I) is the identity matrix and suppose if we
have ((A−I), (A−I)) is non-singular, then we have (m,m) = ((A−I)−1Ac, (A−

I)−1Ac) which clearly gives all the values of (mi,mi), i = 1, 2, 3, . . . , N .
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4. Conclusion

In this paper, we developed an efficient and appropriate method to solve fuzzy
integro-differential equations. Reliability of HPM due to its precise results
and reduction in computation gives it a wider applicability. Proposed method
based on HPM presented in the form of convergent series with easily computable
components avoids tedious work needed by the traditional methods. Advantage
of the proposed method lies in the free selection of initial approximation in
a straightforward manner and also it overcomes the drawbacks of handling
larger equations. Since there are challenging issues to solve these equations, our
method is trustworthy and we showed that construction of proper homotopy
leads to highly accurate solutions and is considered as a remarkable benefit of
this algorithm undoubtedly.
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