MORE ON WEAK DECOMPOSITION OF CONTINUITY

Ennis Rosas1,8, Carlos Carpintero2, John Moreno3, Jose Sanabria4

1,2Department of Mathematics
Universidad de Oriente
Núcleo De Sucre-Cumaná, VENEZUELA

1Department of Natural Sciences and Exact
Universidad de la Costa
Barranquilla, COLOMBIA

3Departamento de Ciencias Naturales y Exacta
Universidad de la Costa
Barranquilla, COLOMBIA

4Department of Mathematics
Universidad de Oriente
Núcleo De Sucre Cumaná
Venezuela and Program of Mathematics
Universidad del Atlántico
Barranquilla, COLOMBIA

\textbf{Abstract:} Using the notion of w-space on a set X and the concept of locally w-semi open set, we introduce, study and characterize the notions of w-s-Kernel of a subset A of X. Also we introduce and study a new forms of weak decomposition of continuity.

\textbf{AMS Subject Classification:} 54C05, 54C08, 54C10

\textbf{Key Words:} μ-st-set, μ-sB-set, (μ, σ)-s-continuous functions, w-s-$\text{Ker}(A)$

\section{1. Introduction and Preliminaries}

In the last years, different variants of open sets are being studied. Recently, a
significant contribution to the theory of generalized open sets have been presented by A. Császár [1], [2], [3]. Specifically, in 2002, A. Császár [1], introduced the notions of generalized topology and generalized continuity. It is observed that a large numbers of articles are devoted to the study of generalized open sets and certain type of sets associated to a topological spaces, containing the class of open sets and possessing properties more or less to those open sets. Bishwambhar. et al. [4] studied some type of decomposition of continuity using generalized topologies and in [5], studied some weak forms of continuity. Rosas E. et al. in [10], give a new theory of decomposition of continuous functions using generalized topologies. In 2015, W. K. Min et al. [7], introduced and studied the notions of weak structures on a nonempty set X. In 2016, W. K. Min et al. introduced the notions of w-semiopen sets and w-semi continuity in w-spaces. Later in 2017, W. K. Min in [6], introduced and studied the notions of weakly $w_\tau g$-closed set and weakly $w_\tau g$-open set as a generalization of the $w_\tau g$-closed set and $w_\tau g$-open set in associated w-spaces. E. Rosas et al in [9], introduce the concepts of locally w-regular closed sets and locally w-semi regular semi closed and a new weak decomposition of some type of weak continuity functions are studied and characterized. In this article, using the notion of w-semi open set, we introduce the concept of locally w-semi open set as a generalization of locally w-closed and give a new theory of weak decomposition of continuity and some weak form of continuity are studied. Throughout this paper $cl(A)$ (respectively $int(A)$) denotes the closure (respectively interior) of A in a topological space X.

2. Preliminaries

Definition 2.1. [7] Let X be a nonempty set. A subfamily w_X of the power set $P(X)$ is called a weak structure on X if it satisfies the following:

1. $\emptyset \in w_X$ and $X \in w_X$.
2. For $U_1, U_2 \in w_X$, $U_1 \cap U_2 \in w_X$

Then the pair (X, w_X) is called a w-space on X. An element $U \in w_X$ is called w-open set and the complement of a w-open set is a w-closed set.

Definition 2.2. [7] Let (X, w_X) be a w-space. For a subset A of X,

1. The w-closure of A is defined as $wC(A) = \bigcap\{F : A \subseteq F, X \setminus F \in w_X\}$.
2. The w-interior of A is defined as $wI(A) = \bigcup\{U : U \subseteq A, U \in w_X\}$.
Theorem 2.3. [7] Let \((X, w_X)\) be a w-space on \(X\). \(A, B\) subsets of \(X\). Then the following hold:

1. If \(A \subseteq B\), then \(wI(A) \subseteq wI(B)\) and \(wC(A) \subseteq wC(B)\).
2. \(wI(wI(A)) = wI(A)\) and \(wC(wC(A)) = wC(A)\)
3. \(wC(X \setminus A) = X \setminus wI(A)\) and \(wI(X \setminus A) = X \setminus wC(A)\)
4. If \(A\) is w-closed (resp. w-open), then \(wC(A) = A\) (resp. \(wI(A) = A\))

Definition 2.4. [8] Let \((X, w_X)\) be a \(\omega\)-space on \(X\). A subset \(A\) of \(X\) is called w-semi open if \(A \subseteq wC(wI(A))\). The complement of a w-semi open set is called w-semi closed.

The collection of all w-semi open sets is denoted by \(wSO(X, w_X)\) and the collection of all w-semi closed sets is denoted by \(wSC(X, w_X)\)

Definition 2.5. [8] Let \((X, w_X)\) be a w-space on \(X\). For a subset \(A\) of \(X\)

1. The w-semi closure of \(A\) is defined as \(wsC(A) = \bigcap\{F : A \subseteq F, X \setminus F \in wSO(X, w_X)\}\).
2. The w-semi interior of \(A\) is defined as \(wsI(A) = \bigcup\{U : U \subseteq A, U \in wSO(X, w_X)\}\).

Theorem 2.6. [8] Let \((X, w_X)\) be a w-space on \(X\). \(A, B\) subsets of \(X\). Then the following hold:

1. \(wsI(A) \subseteq A\) and \(A \subseteq wsC(A)\).
2. If \(A \subseteq B\), then \(wsI(A) \subseteq wsI(B)\) and \(wsC(A) \subseteq wsC(B)\).
3. \(wsI(wsI(A)) = wsI(A)\) and \(wsC(wsC(A)) = wsC(A)\).
4. \(A\) is w-semi closed (resp. w-semi open), if and only if \(wsC(A) = A\) (resp. \(wsI(A) = A\)).

Theorem 2.7. [8] Let \((X, w_X)\) be a w-space on \(X\) and \(A\) a subset of \(X\). Then \(wsC(A)\) is an w-semi closed.

Theorem 2.8. Let \((X, w_X)\) be a w-space on \(X\) and \(A\) a subset of \(X\). Then \(A \cup wI(wC(A)) \subseteq wsC(A)\).
The following example shows that the reverse contention in the above theorem is not necessarily true.

Example 2.9. Let \(X = \mathbb{N} \) be the set of natural numbers. Define \(w_X = \{\emptyset, \{1\}, \mathbb{N}\} \cup P(\{2n : n \in \mathbb{N}\}) \). The set of \(w \)-closed sets is \(\emptyset,\{1\},\mathbb{N}\setminus\{1\}\cup\{A^c : A \in P(\{2n : n \in \mathbb{N}\})\} \). The set of \(w \)-semiopen sets is \(\emptyset,\{1\},\mathbb{N},F_1,F_2\cup P(\{2n : n \in \mathbb{N}\})\) where \(F_1 \cap \{2n : n \in \mathbb{N}\} \neq \emptyset \) and \(1 \in F_2 \). If we take \(A = \{3\} \), \(wsC(A) = \{3\} \), \(wC(A) = \{2n + 1 : n \in \mathbb{N}\} \) and \(wI(wC(A)) = \{1\} \). Observe that \(A \cup wI(wC(A)) = \{1,3\} \supset \{3\} = wsC(A) \).

Theorem 2.10. Let \((X,w_X)\) be a \(w \)-space on \(X \) and \(A,B \) subsets of \(X \). Then

1. \(x \in wsC(A) \) if and only if \(A \cap V \neq \emptyset \), for every \(w \)-semiopen set \(V \) containing \(x \).
2. \(wsC(A \cap B) = wsC(A) \cap wsC(B) \).

3. New Types of \(w \)-Closed Sets

Throughout this paper \((X,w_X,\tau)\) a weak topological space denotes \((X,w_X)\) is a \(w \)-space and \((X,\tau)\) is a topological space.

Definition 3.1. [4] Let \((X,w_X,\tau)\) be a weak topological space. A subset \(A \) of \(X \) is called locally \(w \)-closed if \(A = U \cap F \) where \(U \in \tau \) and \(F \) is \(w \)-closed.

Remark 3.2. If \((X,w_X,\tau)\) is a weak topological space, then every open set as well as a \(w \)-closed set is locally \(w \)-closed.

Theorem 3.3. Let \((X,w_X,\tau)\) be a weak topological space. If \(A \subseteq X \) is locally \(w \)-closed then there exists an open set \(U \) such that \(A = U \cap wC(A) \).

Proof. Let \(A \) be a locally \(w \)-closed subset of \(X \), then \(A = U \cap F \), where \(U \in \tau \) and \(F \) is \(w \)-closed. It follows that \(A = A \cap U \subseteq U \cap wC(A) \subseteq U \cap wC(F) = U \cap F = A \). In consequence, \(A = U \cap wC(A) \).

Example 3.4. In Example 3.12, \(\{a,b\} = \{a,b,c\} \cap wsC(\{a,b\}) \), but \(\{a,b\} \) is not a locally \(w \)-closed set.

Definition 3.5. Let \((X,w_X,\tau)\) be a weak topological space. A subset \(A \) of \(X \) is called:
1. \(w\)-t-set if \(\text{int}(A) = \text{int}(wC(A)) \).

2. \(w\)-B-set if \(A = U \cap V, \ U \in \tau, \ V \) is a \(w\)-t-set.

3. \(w^\ast\)-open set if \(A \subseteq \text{cl}(wI(A)) \).

4. \(w^\ast\)-open set if \(A \subseteq \text{int}(wC(A)) \).

Definition 3.6. Let \((X, w_X, \tau)\) be a weak topological space. A subset \(A \) of \(X \) is called generalized \(w \)-closed or simple a \(gw \)-closed if \(wC(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \in \tau \).

Definition 3.7. [9] Let \((X, w_X, \tau)\) be a weak topological space. A subset \(A \) of \(X \) is called locally \(w \)-semi closed or simple locally \(w \)-s-closed if \(A = U \cap V \), \(U \in \tau \), \(V \) is a \(w \)-st-set.

Remark 3.8. If \((X, w_X, \tau)\) is a weak topological space, then every open set as well as a \(w \)-semi closed set is locally \(w \)-semi closed, also every locally \(w \)-closed set is locally \(w \)-semi closed.

Definition 3.9. Let \((X, w_X, \tau)\) be a weak topological space. A subset \(A \) of \(X \) is called:

1. \(w\)-st-set if \(\text{int}(A) = \text{int}(wsC(A)) \).

2. \(w\)-sB-set if \(A = U \cap V, \ U \in \tau, \ V \) is a \(w \)-st-set.

3. \(w^\ast\)-semi open set (briefly \(w^\ast\)-s-open set) if \(A \subseteq \text{cl}(wsI(A)) \).

4. \(w^\ast\)-semi open set (briefly \(w^\ast\)-s-open set) if \(A \subseteq \text{int}(wsC(A)) \).

The complement of a \(w^\ast\)-semi open set is called \(w^\ast\)-semi closed set (briefly \(w^\ast\)-s-closed set).

The following theorems characterizes the locally \(w \)-semi closed sets.

Theorem 3.10. Let \((X, w_X, \tau)\) be a weak topological space. \(A \subseteq X \) is locally \(w \)-semi closed if and only if \(X - A \) is the union of a closed set and a \(w \)-semi open set.

Proof. Suppose that \(A \) is locally \(w \)-semi closed, then \(A = U \cap F \) where \(U \in \tau \) and \(F \) is \(w \)-semi closed. It follows that \(X - A = X \cap (U \cap F)^c = (U^c \cup F^c) = (X - U) \cup (X - F) \). Conversely, suppose that \(X - A = W \cup G \), \(W \) closed set and \(G \) \(w \)-semi open. Then \(A = X - (X - A) = X - (W \cup G) = (X - W) \cap (X - G) \). \(\square \)
Theorem 3.11. Let \((X, w_X, \tau)\) be a weak topological space. \(A \subseteq X\) is locally \(w\)-semi closed if and only if there exists an open set \(U\) such that \(A = U \cap wsC(A)\).

Proof. Let \(A\) be a locally \(w\)-semi closed subset of \(X\), then \(A = U \cap F\), where \(U \in \tau\) and \(F\) is \(w\)-semi closed. It follows that \(A = A \cap U \subseteq U \cap wsC(A) \subseteq U \cap wsC(F) = U \cap F = A\). In consequence, \(A = U \cap wsC(A)\). Conversely, since \(wsC(A)\) is a \(w\)-semi closed, it follows that \(A\) is locally \(w\)-semi closed. \(\Box\)

In the following example, we can see that there exists a locally \(w\)-semi closed set that is not open as well as \(w\)-semi closed, \(w\)-st-set that is not \(w\)-s-set, \(w\)-sB-set that is not \(w\)-B-set.

Example 3.12. Let \(X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a, b, c\}, \{c, d\}, \{c\}\}\) and \(w_X = \{\emptyset, X, \{a, b\}, \{b, c\}, \{b\}\}\) be a weak structure on \((X, \tau)\). Then:

1. \(w\)-closed sets \(= \{\emptyset, X, \{c, d\}, \{a, d\}, \{a, c, d\}\}\).
2. locally \(w\)-closed \(= \{\emptyset, X, \{a, b, c\}, \{a, c, d\}, \{c, d\}, \{c\}, \{a, d\}, \{a\}, \{a, c\}, \{d\}\}\).
3. \(wSO(X, w_X) = \{\emptyset, X, \{b\}, \{a, b\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\}\).
4. \(wSC(X, w_X) = \{\emptyset, X, \{a, c, d\}, \{c, d\}, \{a, d\}, \{a, c\}, \{d\}, \{c\}, \{b\}\}\).
5. locally \(w\)-s-closed \(= \{\emptyset, X, \{a, b, c\}, \{c, d\}, \{c\}, \{a, c, d\}, \{c, d\}, \{a, d\}, \{a, c\}, \{d\}, \{b\}, \{a\}\}\).
6. \(w\)-t-set \(= \{\emptyset, X, \{a\}, \{d\}, \{a, d\}, \{c, d\}, \{a, c, d\}\}\).
7. \(w\)-st-set \(= \{\emptyset, X, \{a\}, \{b\}, \{d\}, \{a, d\}, \{a, c\}, \{c, d\}, \{a, c, d\}\}\).
8. \(w\)-B-set \(= \{\emptyset, X, \{a, b, c\}, \{c, d\}, \{c\}, \{a\}, \{d\}, \{a, d\}, \{c, d\}, \{a, c, d\}, \{a, c\}\}\).
9. \(w\)-sB-set \(= \{\emptyset, X, \{a, b, c\}, \{c, d\}, \{c\}, \{a\}, \{b\}, \{d\}, \{a, d\}, \{a, c\}, \{a, c, d\}\}\).
10. \(w^*\)-open \(= \{\emptyset, X, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}\).
11. \(w^*\)-s-open \(= \{\emptyset, X, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}\).
12. w-open $= \{ \emptyset, X, \{ b \}, \{ c \}, \{ a, b \}, \{ b, c \}, \{ b, d \}, \{ c, d \}, \{ a, b, c \}, \{ b, c, d \} \}$.

13. w-s-open $= \{ \emptyset, X, \{ a, b \}, \{ b, c \}, \{ b, d \}, \{ c, d \}, \{ a, b, d \}, \{ a, c, d \}, \{ b, c, d \} \}$.

The following examples will be useful to better understand the development of this article.

Example 3.13. Let $X = \{ a, b, c \}$, $\tau = \{ \emptyset, X, \{ a \}, \{ b \} \}$ and $w_X = \{ \emptyset, X, \{ a \}, \{ a, c \} \}$ be a weak structure on (X, τ). Then:

1. w-closed sets $= \{ X, \{ b, c \}, \{ b \} \}$.

2. locally w-closed $= \{ \emptyset, X, \{ a \}, \{ b \}, \{ a, b \} \}$.

3. $wSO(X, w_X) = \{ \emptyset, X, \{ a \}, \{ b \}, \{ a, b \}, \{ a, c \} \}$.

4. $wSC(X, w_X) = \{ \emptyset, X, \{ b, c \}, \{ c \}, \{ b \}, \{ a \} \}$.

5. locally w-s-closed $= \{ \emptyset, X, \{ b, c \}, \{ c \}, \{ b \}, \{ a \}, \{ a, b \}, \{ a, c \} \}$.

6. w-t-set $= \{ X, \{ b \}, \{ b, c \} \}$.

7. w-st-set $= \{ \emptyset, X, \{ b \}, \{ c \}, \{ a \}, \{ b, c \}, \{ a, c \} \}$.

8. w-B-set $= \{ \emptyset, X, \{ b \}, \{ a \}, \{ b, c \}, \{ a, b \} \}$.

9. wsB-set $= \{ \emptyset, X, \{ b \}, \{ a \}, \{ a, b \}, \{ a, c \}, \{ b \} \}$.

10. w^*-open $= \{ \emptyset, \{ a \}, \{ b \}, \{ a, c \} \}$.

11. w^*-s-open $= \{ \emptyset, X, \{ a \}, \{ b \}, \{ a, c \}, \{ b, c \} \}$.

12. w-open $= \{ \emptyset, X, \{ a \}, \{ b \}, \{ a, b \}, \{ a, c \} \}$.

13. w-s-open $= \{ \emptyset, X, \{ a \}, \{ b \}, \{ a, b \} \}$.

In a weak topological space (X, w_X, τ), always $wSC(A) \subseteq wC(A)$ and $wI(A) \subseteq wsI(A)$ for all $A \subseteq X$. Therefore, we obtain the relationship between the sets given in Definitions 3.5 and 3.7.

Theorem 3.14. Let (X, w_X, τ) be a weak topological space and $A \subset X$. Then the following holds:

1. If A is a w-t-set, then A is a w-st-set.
2. If A is a w-B-set, then A is a w-sB-set.

3. If A is a w^*-open, then A is a w^*-s-open.

4. If A is a w-s-open, then A is a w-open.

Example 3.15. Let $X = \{a, b, c\}$ with $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and weak structure $w_X = \{\emptyset, X, \{b, c\}\}$ and on (X, τ). Observe that τ is not contained in w. If we take $A = \{a, b\}$, A is locally w-semi closed, because $A = \{a, b\} \cap X$, $wsC(A) = X$, $wsC(A) - A = \{c\}$ is not w-semi closed. $A \cup (X - wsC(A)) = A = \{a, b\}$ is not a w-semi open set, also A is not contained in $wsI(A \cup (X - wsC(A)))$, because $A \cup (X - wsC(A)) = \{a, b\}$ and $wsI(\{a, b\}) = \emptyset$.

In the case that $\tau \subset w_X$, we have the following theorem.

Theorem 3.16. Let (X, w_X, τ) be a weak topological space and $\tau \subset w_X$. If A is locally w-semi closed, then:

1. $wsC(A) - A$ is w-semi closed.

2. $A \cup (X - wsC(A))$ is w-semi open set.

3. A is contained in $wsI(A \cup (X - wsC(A)))$.

Proof. 1.- Suppose that A is a locally w-semi closed subset of X, then there exists an open set U such that $A = U \cap wsC(A)$. It follows that: $wsC(A) - A = wsC(A) - (U \cap wsC(A)) = wsC(A) \cap (X - (U \cap wsC(A))) = wsC(A) \cap ((X - U) \cup (X - wsC(A))) = wsC(A) \cap (X - U) \cup wsC(A) \cap (X - wsC(A)) = wsC(A) \cap (X - U)$. Now, as $wsC(A)$ is w-semi closed, $X - U$ is closed and $\tau \subset \mu$, we obtain that $X - U$ is w-semi closed and then $wsC(A) \cap (X - U)$ is w-semi closed.

2.- Using (1), $wsC(A) - A$ is w-semi closed, then its complement $X - (wsC(A) - A)$ is w-semi open, but $X - (wsC(A) - A) = X - (wsC(A) \cap (X - A)) = A \cup (X - wsC(A))$.

3.- Using (2), $A \subset (A \cup (X - wsC(A))) = wsI(A \cup (X - wsC(A)))$. \square

Definition 3.17. Let (X, w_X, τ) be a weak topological space. A subset A of X is called generalized w-closed or simple a gw-closed if $wC(A) \subseteq U$ whenever $A \subseteq U$ and $U \in \tau$.

Definition 3.18. Let (X, w_X, τ) be a weak topological space. A subset A of X is called generalized w-semi closed or simple a gw-s-closed if $wsC(A) \subseteq U$ whenever $A \subseteq U$ and $U \in \tau$.
Remark 3.19. In a weak topological space \((X, w_X, \tau)\), every generalized \(w\) closed set is a generalized \(w\)-semi closed set, but the converse is not necessarily true as we can see in the following example.

Example 3.20. In Example 3.12,

1. locally \(w\)-closed = \(\emptyset, X, \{a, b, c\}, \{a, c, d\}, \{c, \}, \{a, d\},\{a,\}, \{a, c\}, \{d\}\)

2. \(gw\)-closed = \(\emptyset, X, \{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, c, d\}, \{a, b, d\},\{b, c, d\}\).

3. \(w\)-closed sets = \(\emptyset, X, \{a, d\}, \{a, c, d\}\).

4. locally \(w\)-s-closed = \(\emptyset, X, \{a, b, c\}, \{c, d\}, \{a, c, d\}, \{a, d\},\{a, c\}, \{d\}, \{b\}, \{a\}\).

5. \(gw\)-s-closed = \(\emptyset, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, d\}, \{a, c\}, \{c, d\},\{a, b, d\}, \{a, c, d\}, \{b, c, d\}\).

6. \(wSC(X, w_X) = \emptyset, X, \{a, c, d\}, \{c, d\}, \{a, d\}, \{a, c\}, \{d\}, \{c\}, \{b\}\).

The following theorems characterize: the \(w\)-closed sets in terms of \(gw\)-closed sets and locally \(w\)-closed sets and the \(w\)-semi closed sets in terms of \(gw\)-semi closed sets and locally \(w\)-semi closed sets.

Theorem 3.21. Let \((X, w_X, \tau)\) be a weak topological space. \(A \subset X\) is \(w\)-closed if and only if \(A\) is \(gw\)-closed and locally \(w\)-closed.

Proof. Suppose that \(A\) is \(w\)-closed in \(X\) and \(A \subset U\), with \(U \in \tau\). Since \(A = wC(A)\), we obtain that \(A\) is \(gw\)-closed and locally \(w\)-closed. Conversely, suppose that \(A\) is \(gw\)-closed and locally \(w\)-closed, then \(A = U \cap F\), where \(U \in \tau\) and \(F\) is \(w\)-closed, therefore, \(A \subset U\) and \(A \subset F\), in consequence, \(wC(A) \subset U\) and \(wC(A) \subset F\) and hence \(wC(A) \subset U \cap F = A\). So \(A\) is \(w\)-closed.

Theorem 3.22. Let \((X, w_X, \tau)\) be a weak topological space. \(A \subset X\) is \(w\)-semi closed if and only if \(A\) is \(gw\)-semi closed and locally \(w\)-semi closed.

Proof. Suppose that \(A\) is \(w\)-semi closed in \(X\) and \(A \subset U\), with \(U \in \tau\). Since \(A = wsC(A)\), we obtain that \(A\) is \(gw\)-semi closed and locally \(w\)-semi closed. Conversely, suppose that \(A\) is \(gw\)-semi closed and locally \(w\)-semi closed, then \(A = U \cap F\), where \(U \in \tau\) and \(F\) is \(w\)-semi closed, therefore, \(A \subset U\) and \(A \subset F\), in
consequence, \(wsC(A) \subset U \) and \(wsC(A) \subset F \) and hence \(wsC(A) \subset U \cap F = A \). So \(A \) is \(w \)-semi closed.

Theorem 3.23. Let \((X, w_X, \tau) \) be a weak topological space and \(A, B \) subsets of \(X \).

1. \(A \) is a \(w \)-st-set if and only if \(A \) is a \(w^* \)-s-closed.
2. If \(A \) is \(w \)-semi closed, then \(A \) is \(w \)-st-set.
3. If \(A \) and \(B \) are \(w \)-st-sets, then \(A \cap B \) is \(w \)-st-set.
4. If \(A \) is \(w \)-st-set, then \(A \) is \(w \)-sB-set.
5. Every locally \(w \)-semi closed set is \(w \)-sB-set.

Proof. 1-. Suppose that \(A \) is a \(w \)-st-set, then \(int(A) = int(wsC(A)) \) and hence \(int(wsC(A)) \subset A \), in consequence, \(A \) is a \(w^* \)-s-closed. Conversely, if \(A \) is a \(w^* \)-s-closed, then \(int(wsC(A)) \subset A \) and hence \(int(wsC(A)) \subset int(A) \subset A \subset int(wsC(A)) \). Therefore, \(int(wsC(A)) \subset int(A) \subset int(A) \subset int(wsC(A)) \). In consequence, \(int(wsC(A)) = A \), so \(A \) is a \(w \)-st-set.

2-. If \(A \) is \(w \)-semi closed, then \(A = wsC(A) \), and hence \(int(A) = int(wsC(A)) \).

3-. Suppose that \(A \) and \(B \) are \(w \)-st-sets. Since \(A \cap B \subset wsC(A \cap B) \), we obtain that \(int(A \cap B) \subset int(wsC(A \cap B)) \subset int(wsC(A) \cap wsC(B)) = int(wsC(A)) \cap int(wsC(B)) = int(A) \cap int(B) = int(A \cap B) \). In consequence, \(int(A \cap B) = int(wsC(A \cap B)) \).

4-. Since \(X \in \tau \) and \(A = A \cap X \), then \(A \) is a \(\mu \)-sB-set.

5-. Suppose that \(A \) is locally \(w \)-semi closed set of \(X \), then \(A = U \cap F \), where \(U \in \tau \) and \(F \) is a \(w \)-semi closed. Using (2), \(F \) is \(w \)-st-set, then by (4), follows that \(A = U \cap F \), where \(U \in \tau \) and \(F \) is a \(w \)-st-set and therefore, \(A \) is \(w \)-sB-set.

In the following examples show that the converse of the above theorem is not necessarily true.

Example 3.24. In Example 3.12, \(\{c\} \) is \(w \)-sB-set, but is not \(w \)-st-set. Also \(\{a\} \) is \(w \)-st-set, but is not \(w \)-semi closed.

Example 3.25. Let \(X = \{a, b, c\} \), \(\tau = \emptyset, X, \{c\} \) and \(w_X = \emptyset, X, \{a\}, \{a, b\} \). Then \(\{a\} \) is a \(w \)-sB-set but is not locally \(w \)-semi closed.
Theorem 3.26. Let \((X, w_X, \tau)\) be a weak topological space. \(A \subset X\) is open if and only if \(A\) is \(w\)-s-open and \(w\)-sB-set.

Proof. Let \(A\) be an open set, then \(A = \text{int}(A) \subseteq \text{int}(wsC(A))\) and hence, \(A\) is \(w\)-s-open set. Since \(A = A \cap X\), where \(X\) is \(w\)-st-set, then \(A\) is \(w\)-sB-set. Conversely, since \(A\) is a \(w\)-sB-set, \(A = U \cap V\), where \(U \in \tau\) and \(V\) is a \(w\)-st-set. By hypothesis, \(A \subseteq \text{int}(wsC(A)) = \text{int}(wsC(U \cap V)) \subseteq \text{int}(wsC(U) \cap wsC(V)) = \text{int}(wsC(U)) \cap \text{int}(wsC(V)) = \text{int}(wsC(U)) \cap \text{int}(V)\). But \(A = U \cap V = (U \cap V) \cap U \subseteq (\text{int}(wsC(U)) \cap \text{int}(V)) \cap U = (\text{int}(wsC(U)) \cap U \cap \text{int}(V)) = U \cap \text{int}(V) \subseteq U \cap V = A\). Therefore, \(A\) is an open set.

Example 3.27. In Example 3.12, \(\{b, c, d\}\) is \(w\)-s-open but not \(w\)-sB-set. In the same form, \(\{a\}\) is \(w\)-sB-set but is not \(w\)-s-open, in consequence, is not open.

4. \((w, \sigma)\)-s-Continuous Functions

Definition 4.1. Let \((X, w_X, \tau)\) be a weak topological space and \((Y, \sigma)\) be a topological space. A function \(f : (X, \tau) \rightarrow (Y, \sigma)\) is said to be \((w, \sigma)\)-continuous if \(f^{-1}(V)\) is \(w\)-open in \(X\) for each open set \(V\) of \(Y\).

Definition 4.2. Let \((X, w_X, \tau)\) be a weak topological space and \((Y, \sigma)\) be a topological space. A function \(f : (X, \tau) \rightarrow (Y, \sigma)\) is said to be \((w, \sigma)\)-s-continuous if \(f^{-1}(V)\) is \(w\)-semi open in \(X\) for each open set \(V\) of \(Y\).

Theorem 4.3. Every \((w, \sigma)\)-continuous function is \((\mu, \sigma)\)-s-continuous but not conversely.

Example 4.4. Let \(X = \mathbb{R}\) be the set of real numbers, \(w_X = \{\emptyset, \mathbb{R}, \mathbb{R} \setminus \mathbb{Q}\}\) and \(\tau = \sigma = \{\emptyset, \mathbb{R}, \mathbb{Q}\}\) where \(\mathbb{Q}\) denotes the set of all rational numbers and \(\mathbb{R} \setminus \mathbb{Q}\) denotes the set of all irrational numbers. Define \(f : (\mathbb{R}, \tau) \rightarrow (\mathbb{R}, \sigma)\) as the identity function. Then \(f\) is \((w, \sigma)\)-s-continuous but not \((w, \sigma)\)-continuous.

Theorem 4.5. Let \((X, w_X, \tau)\) be a weak topological space, \((Y, \sigma)\) be a topological space and \(f : (X, \tau) \rightarrow (Y, \sigma)\) a function. Then the following are equivalent:

1. \(f\) is \((w, \sigma)\)-s-continuous.

2. For each \(x \in X\) and each open set \(V\) of \(Y\) with \(f(x) \in V\), there exists a \(w\)-semi open set \(U\) containing \(x\) such that \(f(U) \subseteq V\).
3. For each \(x \in X \) and each open set \(V \) of \(Y \) with \(f(x) \in V \), \(f^{-1}(V) \) is a \(w \)-semi open neighborhood of \(x \).

4. The inverse image of each closed set in \(Y \) is \(w \)-semi closed.

5. \(wsC(f^{-1}(B)) \subseteq f^{-1}(cl(B)) \) for every \(B \subseteq Y \).

6. \(f(wsC(A)) \subseteq cl(f(A)) \) for every \(A \subseteq X \).

7. \(f^{-1}(int(B)) \subseteq wsI(f^{-1}(B)) \) for every \(B \subseteq Y \).

Proof. 1. \(\Rightarrow \) 2. Let \(x \in X \) and \(V \) any open set in \(Y \) such that \(f(x) \in V \). Since \(f \) is \((w, \sigma)\)-continuous, \(f^{-1}(V) \) is \(w \)-semi open. By putting \(U = f^{-1}(V) \), \(x \in U \) and \(f(U) \subseteq V \).

2. \(\Rightarrow \) 3. Let \(x \in X \) and \(V \) an open in \(Y \) such that \(f(x) \in V \). By 2, there exists a \(w \)-semi open set \(U \) containing \(x \) such that \(f(U) \subseteq V \). So each \(x \in U \subseteq f^{-1}(V) \) and hence \(f^{-1}(V) \) is a \(w \)-semi open neighborhood of \(x \).

3. \(\Rightarrow \) 1. Let \(x \in X \) and \(V \) an open in \(Y \) such that \(f(x) \in V \). By 3, \(f^{-1}(V) \) is a \(w \)-semi open neighborhood of \(x \). Thus for each \(x \in f^{-1}(V) \), there exists a \(w \)-semi open set \(U_x \) containing \(x \) such that \(x \in U_x \subseteq f^{-1}(V) \). Hence \(f^{-1}(V) = \bigcup_{x \in f^{-1}(V)} U_x \) and so \(f^{-1}(V) \in wSO(X) \).

1. \(\Leftrightarrow \) 4. It is obvious.

1. \(\Rightarrow \) 5. Let \(B \) be a subset of \(Y \). Since \(cl(B) \) is closed and \(f \) is \((w, \sigma)\)-continuous, \(f^{-1}(cl(B)) \) is \(w \)-semi closed. Therefore,
\[
wsC(f^{-1}(B)) \subseteq wsC(f^{-1}(cl(B))) = f^{-1}(cl(B)).
\]

5. \(\Rightarrow \) 6. Let \(A \) be a subset of \(X \). By 5, we have
\[
wsC(f^{-1}(f(A))) \subseteq f^{-1}(cl(f(A))).
\]

But \(wsC(A) \subseteq wsC(f^{-1}(f(A))) \). Therefore \(f(wsC(A)) \subseteq cl(f(A)) \).

6. \(\Rightarrow \) 7. Let \(B \) be a subset of \(Y \). By 6,
\[
f(wsC(X \setminus f^{-1}(B))) \subseteq cl(f(X \setminus f^{-1}(B)))
\]

and
\[
f(X \setminus wsI(f^{-1}(B))) \subseteq cl(Y \setminus B) = Y \setminus int(B).
\]

Therefore \(X \setminus wsI(f^{-1}(B)) \subseteq f^{-1}(Y \setminus int(B)) \) and \(f^{-1}(int(B)) \subseteq wsI(f^{-1}(B)) \).

7. \(\Rightarrow \) 1. Let \(B \) be an open in \(Y \) and \(f^{-1}(int(B)) \subseteq wsI(f^{-1}(B)) \). Then
\[
f^{-1}(B) \subseteq wsI(f^{-1}(B)).
\]

But \(wsI(f^{-1}(B)) \subseteq f^{-1}(B) \). Hence \(f^{-1}(B) = wsI(f^{-1}(B)) \). Therefore \(f^{-1}(B) \) is \(w \)-semi open.
\[\square\]
As immediate consequence of Theorem 4.5, we have the following result.

Corollary 4.6. Let \((X, w_X, \tau)\) be a weak topological space and \((Y, \sigma)\) be a topological space and \(f : (X, \tau) \to (Y, \sigma)\) a \((w, \sigma)\)-s-continuous function, then the following are equivalent:

1. \(wsI(wsC(f^{-1}(B))) \cap wsC(wsI(f^{-1}(B))) \subseteq f^{-1}(cl(B))\) for each \(B\) in \(Y\).
2. \(f[wsI(wsC(A)) \cap wsC(wsI(A))] \subseteq cl(f(A))\) for each \(A\) in \(X\).

Definition 4.7. Let \((X, w_X, \tau)\) be a weak topological space and \(A \subseteq X\). Then the \(w\)-s-kernel of \(A\) denoted by \(w-s-Ker(A)\) is defined to be the set, \(w-s-Ker(A) = \cap \{U : U \in wSO(X), A \subseteq U\}\).

Theorem 4.8. Let \((X, w_X, \tau)\) be a weak topological space and \(x \in X\). Then \(y \in w-s-Ker(\{x\})\) if and only if \(x \in wsC(\{y\})\). The converse is similarly shown.

Proof. Assume that \(y \notin w-s-Ker(\{x\})\). Then there exists a \(w\)-semi open set \(U\) containing \(x\) such that \(y \notin U\). Therefore, we have \(x \notin wsC(\{y\})\). The converse is similarly shown.

Theorem 4.9. Let \((X, w_X, \tau)\) be a weak topological space and \(A\) a subset of \(X\). Then \(w-s-Ker(A) = \{x : wsC(\{x\}) \cap A \neq \emptyset\}\).

Proof. Let \(x \in w-s-Ker(A)\) and \(wsC(\{x\}) \cap A = \emptyset\). Then, \(x \notin X \setminus wsC(\{x\})\) which is a \(w\)-semi open set containing \(A\). But this is impossible, since \(x \in w-s-Ker(A)\). Consequently, \(wsC(\{x\}) \cap A \neq \emptyset\).

Conversely, let \(x \in X\) such that \(wsC(\{x\}) \cap A \neq \emptyset\). Suppose that \(x \notin w-s-Ker(A)\). Then there exists a \(w\)-semi open set \(U\) containing \(A\) and \(x \notin U\). Let \(y \in wsC(\{x\}) \cap A\). Then \(y \in wsC(\{x\})\) and \(y \in A\). Thus \(x \in w-s-Ker(\{y\})\) and \(y \in U \in w\) implies \(x \in U \in SO(X)\). By this contradiction, \(x \in w-s-Ker(A)\).

Theorem 4.10. The following are equivalent for any points \(x\) and \(y\) in a weak space \((X, w_X)\):

1. \(w-s-Ker(\{x\}) \neq w-s-Ker(\{y\})\).
2. \(wsC(\{x\}) \neq wsC(\{y\})\).

Theorem 4.11. Let \((X, w_X, \tau)\) be a weak topological space and \(A \subseteq X\). Then

1. \(x \in w-s-Ker(A)\) if and only if \(A \cap F = \emptyset\) for any \(w\)-semi closed subset \(F\) of \(X\) with \(x \in F\).
2. $A \subseteq w-s-Ker(A)$ and $A = w-s-Ker(A)$ if A is w-semi open in X.

3. If $A \subseteq B$ then $w-s-Ker(A) \subseteq w-s-Ker(B)$.

Proof. 1. Let $x \in w-s-Ker(A)$. Then by Theorem 4.9, $A \cap wsC(\{x\}) \neq \emptyset$. Conversely, assume that $A \cap F \neq \emptyset$. By taking $F = wsC(\{x\})$, we have $A \cap wsC(\{x\}) \neq \emptyset$ which implies $x \in w-s-Ker(A)$.

2. Let A be w-semi open in X. Then always $A \subseteq w-s-Ker(A)$. On the other hand, assume that $x \in w-s-Ker(A)$. Then $x \in \bigcap \{U : U \in wSO(X), A \subseteq U\}$. Since A is w-semi open implies that $x \in A$. Thus $w-s-Ker(A) \subseteq A$. Hence $A = w-s-Ker(A)$.

3. It is obvious.

As immediate consequence of Theorems 4.5 and 4.11, we have the following result.

Corollary 4.12. Let (X, w_X, τ) be a weak topological space, (Y, σ) be a topological space and $f : (X, \tau) \to (Y, \sigma)$ a function (w, σ)-s-continuous. Then the following are equivalent:

1. For every subset A of X, $f(wsI(A)) \subset Ker(f(A))$.

2. For every subset B of Y, $wsI(f^{-1}(B)) \subseteq f^{-1}(Ker(B))$.

Definition 4.13. Let (X, w_X, τ) be a weak topological space and (Y, σ) be a topological space. Then $f : (X, \tau) \to (Y, \sigma)$ is said to be gw-s-continuous (respectively contra locally w-s-continuous) if $f^{-1}(F)$ is a gw-s-closed (respectively locally w-s-closed) for each closed set F of (Y, σ).

Example 4.14. In Example 3.13, take $f : (X, \tau) \to (X, \tau)$, defined as: $f(a) = b$, $f(b) = c$ and $f(c) = a$, then f is contra locally w-s-continuous but is not gw-s-continuous. In the same form if in Example 3.25, we define $f : (X, \tau) \to (X, \tau)$, as: $f(a) = b$, $f(b) = a$ and $f(c) = c$, then f is w-s-continuous but is not contra locally w-s-continuous. Observe that in each case f is not (w, τ)-s-continuous.

The following theorem is a direct consequence of Theorem 4.5 and Theorem 3.22

Theorem 4.15. Let (X, w_X, τ) be a weak topological space and (Y, σ) be a topological space. Then $f : (X, \tau) \to (Y, \sigma)$ is (w, σ)-s-continuous if and only if it is gw-s-continuous and contra locally w-s-continuous.
The following example shows the existence of a function that is contra locally w-s-continuous but not is g_w-s-continuous, in consequence is not (w, τ)-s-continuous.

Example 4.16. In Example 3.12, define $f : (X, \tau) \to (X, \tau)$ as follows: $f(a) = a, f(b) = d, f(c) = b$ and $f(d) = c$. According with 3.20, f is contra locally w-s-continuous but not is g_w-s-continuous, in consequence is not (μ, τ)-s-continuous.

Theorem 4.17. Let (X, w_X, τ) be a weak topological space and (Y, σ) be a topological space. Then a contra continuous function $f : (X, \tau) \to (Y, \sigma)$ is (w, σ)-s-continuous if and only if it is g_w-s-continuous.

Proof. Suppose that f is contra continuous and (w, σ)-s-continuous. Let F be a closed set in Y, then $f^{-1}(F)$ is open and w-semi closed in X. Since each w-semi closed is g_w-closed, then f is g_w-s-continuous.

Conversely, let F be a closed set in Y, then $f^{-1}(F)$ is open and g_w-s-closed in X. Since each open set is locally w-s-closed, then $f^{-1}(F)$ is locally w-s-closed and g_w-s-closed, by Theorem 3.22, f is (w, σ)-s-continuous. \hfill \Box

Example 4.18. In Example 4.4, f is (μ, σ)-s-continuous, $f(\mathbb{R} \setminus \mathbb{Q}) = \mathbb{R} \setminus \mathbb{Q}$ is w-open but is not w-s-closed in consequence, f is not contra continuous.

References

