THE EULER FUNCTION GRAPH $G(\phi(n))$

S. Shanmugavelan

Department of Mathematics
Srinivasa Ramanujan Centre
SASTRA University Kumbakonam
612001, INDIA

Abstract: The aim of this paper was to introduce the graph associated with the Euler’s totient function and study its properties.

AMS Subject Classification: 05C75, 68R10

Key Words: Euler function graph, Euler function subgraph, Relatively prime graph, Euler totient cayley graph

1. Introduction

Euler totient function, also known as Euler’s Phi function or simply Phi function, $\phi(n)$, for any natural number n in Number theory context represent the number of positive integer less than or equals n and relatively prime to n. For example, $\phi(1) = 1; \phi(7) = 6$. Moreover, $\phi(n)$ is even for $n \geq 3$. Pomerance [6] defines the divisor graph to any non empty set S of positive integers, where divisor graph $G(S)$ has vertex set S and any two vertices i and j are adjacent iff $gcd(i, j) = min(i, j)$. Certainly, $1 \leq gcd(i, j)$. If equality of this considered, it makes him to define a relatively prime graph $RP(S)$ of S having vertex set as S and any two vertices are adjacent iff they are co-primes. Further he showed that every graph is a relatively prime graph.

J. Baskar Babujee[1] investigated prime labelling for Euler’s Phi function $\phi(n)$ and proved that a maximal number of edges in a simple vertex prime labeling graph with n vertices is $\sum_{k=2}^{n} \phi(n)$. Cayley graph associated with the
Euler totient function, called Euler totient Cayley graph, whose vertex set \(V \) is given by \(Z_n = \{0, 1, 2, \ldots, n - 1\} \) and the edge set is \(E = \{(x, y) / x - y \in S \text{ or } y - x \in S \} \) and is denoted by \((Z_n, \phi)\), where \(S \) denote the set of all positive integers less than \(n \) and relatively prime to \(n \). Moreover, Madhavi L[3] proved that Euler totient function graph to be connected, Hamiltonian and Eulerian for \(n \geq 3 \). M. Manjuri and B. Maheshwari[4,5] proved the clique and matching domination number of \(G(Z_n, \phi) \) for a prime is 1 and for prime powers to be 2. K.J. Sangeetha, B. Maheswari[7] determined minimum edge cover, minimum edge dominating sets, edge covering number and edge domination number of \(G(Z_n, \phi) \).

In this present paper, Euler function graph, a newer category of graph was introduced. Further, connectivity, bipartitionness, completeness, Euler function subgraph was also discussed.

2. Euler Function \(G(\phi(n)) \) Graph

Now, Let us define a Euler function graph,

Definition 2.1. For any natural number \(n \), Euler function graph \(G(\phi(n)) \) is a simple \((V, E)\) graph such that \(V(G(\phi(n))) = \{a / g.c.d(a, n) = 1 \text{ and } a < n\} \) and \(E(G(\phi(n))) = \{am / g.c.d(a, m) = 1 \text{ and } a < m \text{ or } m < a\} \).

Example 2.2. The Euler function graph for \(n = 1 \) to 9 are

![Graphs](image)

Remark 2.3. 1. The order of \(G(\phi(n)) \) is given by \(n(1 - \frac{1}{p_1})(1 - \frac{1}{p_2}) \ldots (1 - \frac{1}{p_k}) \), where \(n \) can be expressed as a decomposition of positive integers as
\[n = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}. \]

2. For any odd prime \(p \), the order of \(G(\phi(p)) \) is exactly \((p - 1)\) only and it is even.

3. Moreover, the maximum degree for \(G(\phi(n)) \) , \(\Delta = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right) \cdots \left(1 - \frac{1}{p_k}\right) - 1 \) and if \(p \) is odd prime, then the maximum degree is \(p - 2 \).

4. Every Euler function graph is Relatively prime graph but the converse need not be true.

Theorem 2.4. For any positive integer \(n \), the Euler function graph \(G(\phi(n)) \) is connected.

Proof. Clearly, \(1 \in V(G(\phi(n))) \) for any natural number \(n \) and every integer is relatively prime to 1. This means the vertex 1 is adjacent to all other remaining vertices in \(G(\phi(n)) \). \(\square \)

Corollary 2.5. Line graph of Euler function graph, \(L(G(\phi(n))) \) is also connected.

Theorem 2.6. \(G(\phi(n)) \) is complete iff every pair of vertices of \(G(\phi(n)) \) are relatively prime.

Proof. **Necessary part** Assume that atleast one pair of vertices which are not relatively prime(say)\(v_1, v_2 \). Clearly, \(v_1 \) and \(v_2 \) are not adjacent in \(G(\phi(n)) \) and hence the resulting graph is not connected. **Sufficient part** It is obvious that if every pair of vertices of \(G(\phi(n)) \) are relatively prime, the graph is always connected. \(\square \)

Theorem 2.7. \(G(\phi(n)) \) is not Eulerian for any number \(n \).

Proof. Clearly, for any \(n \geq 3 \), \(\phi(n) \) is even and therefore there are even number of vertices in \(G(\phi(n)) \). Also, the vertex 1 is adjacent to all other vertices. This implies that \(d_{G(\phi(n))}(1) = \text{odd no.} \) and hence the proof. \(\square \)

Definition 2.8. A subgraph \(H \) of a Euler function graph \(G(\phi(n)) \) is called a Euler function subgraph if \(H \) is itself a Euler function graph.

Example 2.9. Here \(H_1, H_2 \) are Euler function subgraph \(G(\phi(3)), G(\phi(6)) \) of a Euler function graph \(G(\phi(5)) \).
Remark 2.10. It is clear that every subgraph of $G(\phi(n))$ is neither an Euler function graph nor a relatively prime graph.

Theorem 2.11. If every pair of vertices in $G(\phi(n))$ are not relatively prime, then $G(\phi(n))$ is a bipartite graph.

Proof. Clearly, the vertex 1 is only element in any one of the partition (say) X and all other remaining vertices, which are not relatively prime to each other is in partition Y. The resulting graph is a star $K_{1,p-1}$, where p denotes the order of $G(\phi(n))$ and hence bipartite.

Remark 2.12. The following are some observations in $G(\phi(n))$
1. The Dominating number for $G(\phi(n))$ is 1 with minimal dominating set $\{1\}$.
2. The maximum no of edges in $G(\phi(p))$ cannot exceed $\left(\frac{p-1}{2}\right)$ or $\frac{(p-1)(p-2)}{2}$, for any prime p.

References