IJPAM: Volume 116, No. 2 (2017)

Title

FABER POLYNOMIAL COEFFICIENT OF BI-UNIVALENT
FUNCTIONS WITH RESPECT TO SYMMETRIC
$q$-DERIVATIVE OPERATOR

Authors

C. Ramachandran$^1$, D. Kavitha$^2$
$^1$Department of Mathematics
University College of Engineering Villupuram
Kakuppam, Villupuram, 605103, Tamilnadu, INDIA
$^2$Department of Mathematics
IFET College of Engineering
Gangarampalayam, Villupuram-60510, Tamilnadu, INDIA

Abstract

In this paper, we present few applications of polynomials which will give a flavour of basic principles and behaviours. Moreover, the polynomial introduced by Faber is widely used in enormous areas of mathematical sciences including chemical engineering. Using the concepts of Faber polynomial expansions, we introduce new class of analytic bi-univalent functions in the open unit disk and obtain upper bounds for the coefficients of functions belongs to the defined class.

History

Received: 2017-04-28
Revised: 2017-06-04
Published: October 7, 2017

AMS Classification, Key Words

AMS Subject Classification: 30C45, 30C50
Key Words and Phrases: bi-univalent functions, subordination, faber polynomials, symmetric $q$-derivative

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
H. Airault, and R. Jiagang, An algebra of differential operators and generating functions on the set of univalent functions, Bulletin des Sciences Mathematiques, 126, No. 5 (2002), 343-367, doi: https://doi.org/10.1016/S0007-4497(02)01115-6.

2
H. Airault, Symmetric sums associated to the factorization of Grunsky coefficients, In: Conference, Groups and Symmetries, 2007.

3
H. Airault, Remarks on Faber polynomials, Int. Math. Forum, 3, No. 9-12 (2008).

4
R. M. Ali, L. S. Keong, V. Ravichandran, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25, No. 3 (2012), 344-351, doi: https://doi.org/10.1016/j.aml.2011.09.012.

5
G. E. Andrews, Applications of basic hypergeometric functions, SIAM Rev., 16 (1974), 441-484, doi: https://doi.org/10.1137/1016081.

6
D. A. Brannan, J. Clunie, Aspects of Contemporary Complex Analysis, Academic Press, New York Londan, 1980.

7
D. A. Brannan, T. S. Taha, On some classes of bi-univalent functions, Studia Univ. Babes, Bolyai Math., 31, No. 2 (1986), 70-77.

8
P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenscafeten, 259, Spinger, New York (1983).

9
T. Ernst, The History of q-Calculus and a New Method, Licentiate Dissertation, Uppsala, 2001, doi: https://doi.org/10.2991/jnmp.2003.10.4.5.

10
N. J. Fine, Basic hypergeometric series and applications, Mathematical Surveys and Monographs, 27, Amer. Math. Soc., Providence, RI, 1988, doi: https://doi.org/10.1090/surv/027.

11
B. A. Frasin, Coefficient bounds for certain classes of bi-univalent functions, Hacet. J. Math. Stat., 43, No. 3 (2014), 383-389.

12
T. Hayami and S. Owa, Coefficient bounds for bi-univalent functions, Pan Amer. Math. J., 22, No. 4 (2012), 15-26.

13
F. H. Jackson, On q-finctions and a certain difference operator, Transactions of the Royal Society of Edinburgh, 46 (1908) 253-281.

14
F. H. Jackson, On q-definite integrals, Quarterly J. Pure Appl. Math., 41 (1910), 193-203.

15
S. Kanas, C. Ramachandran, and L. Vanitha, Certain results on $q$-starlike and $q$-convex error functions, arXiv: 1607.02101 (2016).

16
A. Kedzierawski, J. Waniurski, Bi-univalent polynomials of small degree, Complex Variables Theory Appl., 10, No. 2-3 (1988), 97-100.

17
A. N. Kirillov, Dilograithm identities, Progr. Theoret. Phys. Suppl., 118 (1995), 61-142.

18
M. Lewin, On a coefficient problem for bi-univalent functions, Appl. Math. Lett., 24 (2011), 1569-1573, doi: https://doi.org/10.1016/j.aml.2011.03.048.

19
A. Mohammed and M. Darus, A generalized operator involving the q-hypergeometric function, Mat. Vesnik, 65, No. 4 (2013), 454–465.

20
E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $z<1$, Arch. Rational Mech. Anal., 32 (1969), 100-112, doi: https://doi.org/10.1007/BF00247676.

21
C. Ramachandran, D. Kavitha, and T. Soupramanien, Certain bound for q-starlike and q-convex functions with respect to symmetric points, Int. J. Math. Math. Sci., pages Art. ID 205682, 7, 2015.

22
C. Ramachandran, T. Soupramanien and B. Frasin, New Subclasses of Analytic Function Associated with q-Difference Operator, European Journal of Pure and Applied Mathematics, 10, No. 2 (2017), 348-362, doi: https://doi.org/10.1155/2015/205682.

23
L. J. Slater, Generalized Hypergeometric Functions, Cambridge Univ. Press, Cambridge, 1966.

24
H. M. Srivastava, D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egypt. Math. Soc., No. 1-4 (2014), doi: https://doi.org/10.1016/j.joems.2014.04.002.

25
H. M. Srivastava, S. Bulut, M. Caglar and N. Yagmur, Coefficient estimates for general subclass of analytic and bi-univalent functions, Filomat, 27, No. 5 (2013), 831-842, doi: https://doi.org/10.2298/FIL1305831S.

26
H. M. Srivastava, and Rosihan M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29, No. 8 (2015), 1839-1845, doi: https://doi.org/10.2298/FIL1508839S.

27
T. J. Suffridge, A coefficient problem for a class of univalent functions, Michigan Math. J., 16, 1969, 33-42.

28
Tan. De Lin, Coefficient estimates for bi-univalent functions, In: An English Summary Apperes in Chinese Ann. Math. Ser. B 5, No. 4 (1984), 741-742.

29
Q. H. Xu, Y. C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25 (2012), 990-994, doi: https://doi.org/10.1016/j.aml.2011.11.013.

How to Cite?

DOI: 10.12732/ijpam.v116i2.11 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 116
Issue: 2
Pages: 391 - 401


$q$-DERIVATIVE OPERATOR%22&as_occt=any&as_epq=&as_oq=&as_eq=&as_publication=&as_ylo=&as_yhi=&as_sdtAAP=1&as_sdtp=1" title="Click to search Google Scholar for this entry" rel="nofollow">Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).