IJPAM: Volume 116, No. 2 (2017)

Title

ON $\delta\theta$-$\mathcal{I}$-CONTINUOUS FUNCTIONS

Authors

R. Lozada$^1$, J. Sanabria$^2$, E. Rosas$^3$, C. Carpintero$^4$, M. Salas$^5$
$^1$Universidad de Oriente
Postgrado en Matemáticas
Cumaná, VENEZUELA
$^{2,3,4,5}$Universidad de Oriente
Departamento de Matemáticas
Cumaná, VENEZUELA
$^2$Universidad del Atlántico
Facultad de Ciencias Básicas
Barranquilla, COLOMBIA
$^3$Universidad de la Costa
Departamento de Ciencias Naturales y Exactas
Barranquilla, COLOMBIA

Abstract

In this paper we use the Kuratowski closure operator $\dcls$ in order to introduce, investigate and characterize the notions of $\delta\theta$-$\mathcal{I}$-continuous functions. Also, we investigate the relationship with another types of related functions in ideal topological spaces.

History

Received: 2017-05-28
Revised: 2017-08-31
Published: October 7, 2017

AMS Classification, Key Words

AMS Subject Classification: 54C05, 54C08
Key Words and Phrases: ideals, $\delta$-local function, $\delta\theta$-$\mathcal{I}$-continuous function

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
A. Açikgöz, T. Noiri and S. Yüksel, A decomposition of continuity in ideal topological spaces, Acta Math. Hungar., 105 (2004), 285-289, doi: https://doi.org/10.1023/B, AMHU.0000049280.10577.4e.

2
J. Dontchev, On pre-$\mathcal{I}$-open sets and a decomposition of $\mathcal{I}$-continuity, Banyan Math. J., 2 (1996).

3
J. Dontchev, M. Ganster and D. Rose, Ideal resolvability, Topology Appl., 93 (1999), 1-6, doi: https://doi.org/10.1016/S0166-8641(97)00257-5.

4
S. Fomin, Extension of topological spaces, Ann. of Math., 44 (1943), 471-480, doi: https://doi.org/10.2307/1968976.

5
E. Hatir, A. Al-Omari and S. Jafari, $\delta$-local functions and its properties in ideal topological spaces,Fasc. Math. (53) (2014), 53-64.

6
D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math.Monthly. (97) (1990), 295-310.

7
K. Kuratowski, Topologie I, Monografie Matematyczne tom 3, PWN-Polish Scientific Publishers, Warszawa 1933.

8
F. Kuyucu, T. Noiri and A. A. Özkurt, A note on $W$-$\mathcal{I}$-continuous functions,Acta Math. Hungar. (4) (2008), 393-400. DOI, https, //doi.org/10.1007/s10474-007-7066-6

9
N. Levine, A decomposition of continuity in topological spaces, Amer. Math.Monthly. (68) (1961), 44-46. DOI, https, //dx.doi.org/10.2307/2311363

10
R. L. Newcomb, Topologies wich are compact modulo an ideal, Ph. D. Dissertation, Univ. of Cal. at Santa Barbara, 1967.

11
T. Noiri, On $\delta$-continuous functions, J. Korean Math. Soc. (16) (1980), 161-166.

12
J. Sanabria, E. Rosas, M. Salas, C. Carpintero and R. Lozada, On a topology between the topologies $\tau_{\theta}$ and $\tau_{\theta\mbox{-}\mathcal{I}}$, submitted (2017).

13
D. Sivaraj, A note on extremally disconnected spaces,Indian J. Pure Appl. Math. (17) (1986), 1373-1375.

14
N. V. Veličko, $H$-closed topological spaces, Amer. Math. Soc. Transl. (78) (1968), 103-118.

15
S. Yüksel, A. Açikgöz and T. Noiri, $\delta$-$\mathcal{I}$-continuous functions, Turk. J. Math. (29) (2005), 39-51.

16
G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge (1990).

17
M. Rosenblum, Generalized Hermite polynomials and the Bose-like oscillator calculus, Operator Theory, Advances and Applications, Birkhäuser, Basel (1994), 369-396.

18
D.S. Moak, The $q$-analogue of the Laguerre polynomials, J. Math. Anal. Appl. (81) (1981), 20-47.

How to Cite?

DOI: 10.12732/ijpam.v116i2.18 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 116
Issue: 2
Pages: 461 - 478


$\delta\theta$-$\mathcal{I}$-CONTINUOUS FUNCTIONS%22&as_occt=any&as_epq=&as_oq=&as_eq=&as_publication=&as_ylo=&as_yhi=&as_sdtAAP=1&as_sdtp=1" title="Click to search Google Scholar for this entry" rel="nofollow">Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).