IJPAM: Volume 116, No. 2 (2017)

Title

ON SOME MULTIPLIERS
OF VECTOR-VALUED AMALGAM SPACES

Authors

Ismail Aydın$^1$, Cihan Unal$^2$
$^{1,2}$Faculty of Arts and Sciences
Sinop University
57000, Sinop, TURKEY

Abstract

We recall the vector-valued classical amalgam spaces $\left( L^{p}\left(
G,A\right) ,\ell ^{q}\right) $ and give several basic properties of this spaces. We also discuss some multipliers spaces from $L^{1}(G,A)\cap \left(
L^{p}\left( G,A\right) ,\ell ^{q}\right) $ to $L^{1}(G,A)$ and $%
L^{1}(G,A)\cap \left( L^{p}\left( G,A\right) ,\ell ^{q}\right) $.

History

Received: 2017-08-15
Revised: 2017-09-05
Published: October 7, 2017

AMS Classification, Key Words

AMS Subject Classification: 43A15, 46E30, 43A22
Key Words and Phrases: vector-valued amalgam spaces, convolution, multipliers

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
I. Aydın, On vector-valued classical and variable exponentamalgam spaces, Commun. Fac. Sci. Univ. Ank. Series A1, 66 (2017), no. 1, 100-114, doi: https://doi.org/10.1501/Commua1_0000000805.

2
J. P. Bertrandis, C. Darty, C. Dupuis, Unions etintersections d'espaces $L^{p}$ invariantes par translation ou convolution,Ann. Inst. Fourier Grenoble 28, 2 (1978), 53-84.

3
R. C. Busby, H. A. Smith, Product-convolution operators andmixed-norm spaces, Trans. Amer. Math. Soc. 263 (1981), no.2, 309-341.

4
J. Diestel, J.J. Uhl, Vector Measures, Amer. Math. Soc., (1977).

5
H. G. Feichtinger, A characterization of Wiener's algebra onlocally compact groups, Arch. Math. 29 (1977), 136-140.

6
J. J. Fournier, J. Stewart, Amalgams of $L^{p}$and $\ell ^{q}$, Bull Amer Math Soc, 13 (1985), 1-21.

7
A. T. Gürkanli, Multipliers of some Banach ideals andWiener-Ditkin sets, Math. Slovaca 55 (2005), no. 2, 237-248.

8
E. Hewitt, K. A. Ross, Abstract Harmonic Analysis v. I, II,Berlin-Heidelberg-New York, Springer-Verlag, (1979).

9
H. C. Lai, Multipliers of Banach-valued function spaces, J.Austral Math. Soc. (Series A), 39 (1985), 51-62.

10
D. V. Lakshmi, S. K. Ray, Vector-valued amalgam spaces, Int. J.Comp. Cog., Vol. 7 (2009), no. 4, 33-36.

11
D. V. Lakshmi, S. K. Ray, Convolution product onvector-valued amalgam spaces, Int. J. Comp. Cog., 8 (2010), no. 3, 67-73.

12
T. S. Liu, A. Van Rooij, Sums and intersections of normedlinear spaces, Math. Nach. 42 (1969), 29-42.

13
M. A. Rieffel, Multipliers and tensor products of $L^{p}$ spacesof locally compact groups, Stud Math, 33 (1969), 71-82.

14
B. Sağır, Multipliers of $L^{1} (G,A)\cap L^{p}\left(G,A\right) $ to $L^{1}(G,A)$, Honam Mathematical J., 21 (1999), no. 1, 97-103.

15
M. L. T. Squire, Amalgams of $L^{p}$ and $\ell ^{q}$,Ph.D. Thesis, McMaster University, (1984).

16
J. Stewart, Fourier transforms of unbounded measures, Canad. J.Math. 31 (1979), no. 6, 1281-1292.

17
U. B. Tewari, M. Dutta, D. P. Vaidya, Multipliers of groupalgebra of vector-valued functions, Proc. Amer. Math. Soc., 81 (1981), 223-229.

18
H. G. Wang, Homogeneous Banach algebras, Marcel Dekker, Inc. NewYork-Basel, (1972).

19
N. Wiener, On the representation of functions by trigonometricintegrals, Math. Z. 24 (1926), 575-616.

How to Cite?

DOI: 10.12732/ijpam.v116i2.22 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 116
Issue: 2
Pages: 547 - 557


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).