IJPAM: Volume 116, No. 2 (2017)

Title

POSITIVE SOLUTIONS TO A NONLINEAR EIGENVALUE
PROBLEM OF FRACTIONAL DIFFERENTIAL EQUATION
WITH INTEGRO-DIFFERENTIAL BOUNDARY CONDITIONS

Authors

Moses B. Akorede$^1$, Peter O. Arawomo$^2$
$^{1,2}$Department of Mathematics
University of Ibadan
Ibadan, NIGERIA

Abstract

In this paper, we establish the existence of positive solutions for eigenvalue problem of fractional differential equations with integro-differential boundary conditions. We determine the intervals of parameter $\lambda$ for which the existence of positive solutions is guaranteed. An example is also presented to show the application of our results.

History

Received: 2016-11-14
Revised: 2017-06-17
Published: October 7, 2017

AMS Classification, Key Words

AMS Subject Classification: 34A08, 34B09, 34B18
Key Words and Phrases: eigenvalue, positive solutions, fractional derivative, integro-differential boundary conditions, cones

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
B. Ahmad, J.J. Nieto, A. Alsaed, Existence and uniqueness of solutions for nonlinear fractional differential equations with non-separated type integral boundary conditions, Acta Mathematica Scientia, 31 (2011), 2122-2130.

2
M. B. Akorede, P. O. Arawomo, Positive solutions for a coupled system of nonlinear second order eigenvalue problems, Int. J. Pure and Applied Math., 100, No.1(2015), 19-28, doi: https://doi.org/10.12732/ijpam.v100i1.3.

3
R. P. Agarwal, M. Bohner, P. J. Y. Wong, Positive solutions and eigenvalues of conjugate boundary value problems, Proc. of Edinburgh Math. Soc., 42 (1999), 349-374, doi: https://doi.org/10.1017/s0013091500020307.

4
D. Anderson, J. Davis, Multiple solutions and eigenvalues for third-order right focal boundary value problem, J. Math. Anal. Appl., 26 (2002), 135-157, doi: https://doi.org/10.1006/jmaa.2001.7756.

5
Z. Bai, H. Lu, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311 (2005), 495-505, doi: https://doi.org/10.1016/j.jmaa.2005.02.052.

6
Z. Bai, On positive solutions of a nonlocal fractional boundary value problem, Nonlinear Analysis, 72, No.2(2010), 916-924, doi: https://doi.org/10.1016/j.na.2009.07.033.

7
A. Cabada, Z. Hamdi, Nonlinear fractional differential equations with integral boundary value conditions, Applied Mathematics and Computation, 228 (2014), 251-257, doi: https://doi.org/10.1016/j.amc.2013.11.057.

8
A. Cabada, G. Wang, Positive solutions of nonlinear fractional differential equations with integral boundary value conditions, J. Math. Anal. Appl., 389 (2012), 403-411, doi: https://doi.org/10.1016/j.jmaa.2011.11.065.

9
M. El-Shahed, On the existence of positive solutions for a boundary value problem of fractional order, Thai J. Math., 5, No.1(2007), 143-150.

10
M. El-Shahed, Positive solutions for a boundary value problem of nonlinear fractional differential equation, Abstr. Appl. Anal., 2007 (2007), Article ID10368, 8pages, doi: https://doi.org/10.1155/2007/10368.

11
J. R. Graef, B. Yang, Existence and nonexistence of positive solutions of fourth-order nonlinear boundary value problems, Applicable Analysis, 74 (2000), 201-214.

12
J. R. Graef, C. Qian, B. Yang, A three-point boundary value problem for nonlinear fourth-order differential equations, J. Math. Anal. Appl., 287 (2003), 217-233, doi: https://doi.org/10.1016/s0022-247X(03)00545-6.

13
X. Hao, L. Liu, Y. Wu, Q. Sun, Positive solutions for nth-order singular eigenvalue problem with nonlocal conditions, Nonlinear Anal., 73 (2010), 1653-1662, doi: https://doi.org/10.1016/j.na.2010.04.074.

14
J. Henderson, H. Wang, Positive solutions for nonlinear eigenvalue problems, J. Math. Anal. Appl., 208 (1997), 252-259, doi: https://doi.org/10.1016/jmaa.1997.5334.

15
J. Henderson, R. Luca, Positive solutions for a system of fractional differential equations with coupled integral boundary conditions, Applied Math. and Comput., 249 (2014), 182-197, doi: https://doi.org/10.1016/j.amc.2014.10.028.

16
J. Jin, X. Liu, M. Jia, Existence of positive solutions for singular fractional differential equations with integral boundary conditions, Electron. J. Diff. Equations, 2012, No.63(2012), 1-14.

17
M. A. Krasnosel'skii, Positive Solutions of Operator Equations, Noordhoff, Groningen, (1964).

18
C. F. Li, X. N. Luo, Y. Zhou, Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations, Computer and Mathematics with Applications, 59 (2010), 1363-1375, doi: https://doi.org/10.1016/j.camwa.2009.06.029.

19
K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York, (1993).

20
R. Ma, Multiple positive solutions for a semipositone fourth-order boundary value problem, Hiroshima Math. J., 33 (2003), 217-227.

21
I. Podlubny, Fractional Differential Equations, Vol.198, Mathematics in Science and Engineering, Academic Press, San Diego, California, USA, (1999).

22
Y. Sun, M. Zhao, Positive solutions for a class of fractional differential equations with integral boundary conditions, Applied Mathematics Letters, 34 (2014), 17-21, doi: https://doi.org/10.1016/j.aml.2014.03.008.

23
X. Wang, X. Liu, X. Deng, Existence and nonexistence of positive solutions for fractional integral boundary value problem with two disturbance parameters, Boundary value problems, 2015, No.186(2015), 13 pages, doi: https://doi.org/10.1186/s13661-015-0450-1.

24
Y. Wang, L. Liu, Y. Wu, Positive solutions of a fractional boundary value problem with changing sign nonlinearity, Abstr. Appl. Anal., 2012 (2012), Article ID149849, 12pages, doi: https://doi.org/10.1155/2012/149849.

25
Q. Yao, Positive Solutions and eigenvalue intervals of a nonlinear singular fourth-order boundary value problem, Applications of Math., 58, No.1(2013), 93-110, doi: https://doi.org/10.1007/s10492-013-0004-8.

26
X. Zhang, L. Wang, Q. Sun, Existence of positive solutions for a class of nonlinear fractional differential equation with integral boundary conditions and a parameter, Applied Mathematics and Computation, 226 (2014), 708-718, doi: https://doi.org/10.1016/j.amc.2013.10.089.

27
X. Zhang, L. Liu, B. Wiwatanapataphee, Y. Wu, Positive solutions of eigenvalue problems for a class of fractional differential equations with derivatives, Abstr. Appl. Anal., 2012 (2012), Article ID512127, 16pages, doi: https://doi.org/10.1155/2012/512127.

28
X. Zhang, L. Liu, Y. Wu, The eigenvalue problem for a singular higher order fractional differential equation involving fractional derivatives, Appl. Math. Computation, 218 (2012), 8526-8536, doi: https://doi.org/10.1016/j.amc.2012.02.014.

29
H. Zhang, Multiple positive solutions of nonlinear BVPs for differential systems involving integral conditions. Boundary value problems, 2014, No.61(2014), 13 pages, doi: https://doi.org/10.1186/1687-2770-2014-61.

30
C. Zhai, M. Hao, Multiple positive solutions to nonlinear boundary value problem of a system for fractional differential equations, The Scientific World Journal, 2014 (2014), Art.ID817542, 11pages, doi: https://doi.org/10.1155/2014/817542.

31
X. Zhao, C. Chai, W. Ge, Existence and nonexistence results for a class of fractional boundary value problems, J. Appl. Math. Comput., 41 (2013), 17-31, doi: https://doi.org/10.1007/s12190-012-0590-8.

How to Cite?

DOI: 10.12732/ijpam.v116i2.3 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 116
Issue: 2
Pages: 313 - 328


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).