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Abstract: The integral stability of the solutions of a nonlinear differential equation with

non-instantaneous impulses is studied using Lyapunov like functions. In these differential

equation we have impulses, which start abruptly at some points and their action continue on

given finite intervals. Sufficient conditions for integral stability are established.

AMS Subject Classification: 34A34, 34A08, 34D20

Key Words: non-instantaneous impulses, integral stability, Lyapunov functions

1. Introduction

In the real world life there are many processes and phenomena that are charac-
terized by rapid changes in their state. In the literature there are two popular
types of impulses: instantaneous impulses ([1], [4],[8]-[13], [15], [17], [18]) and
non-instantaneous impulses ([1], [3], [5], [7], [14], [19], [20], [22], [23]).

In this paper the impulses start abruptly at some points and their action
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continue on given finite intervals. As a motivation for the study of these systems
we consider the following simplified situation concerning the hemodynamical
equilibrium of a person. In the case of a decompensation (for example, high
or low levels of glucose) one can prescribe some intravenous drugs (insulin).
Since the introduction of the drugs in the bloodstream and the consequent
absorption for the body are gradual and continuous processes, we can interpret
the situation as an impulsive action which starts abruptly and stays active on a
finite time interval. The model of this situation is the so called noninstanteneous
impulsive differential equation.

Integral stability using two different measures for the initial values and for
the solutions of non-instantaneous impulsive nonlinear differential equations is
defined and studied. Sufficient conditions for integral stability are obtained.

2. Preliminary Notes and Definitions

In this paper we will assume two increasing sequences of points {ti}
∞
i=1 and

{si}
∞
i=0 are given such that 0 < s0 < ti ≤ si < ti+1 , i = 1, 2, . . . , and

limk→∞ tk = ∞.

Let t0 ∈ ∪∞
k=0[sk, tk+1) be a given arbitrary point. Without loss of generality

we will assume that t0 ∈ [s0, t1), i.e. 0 ≤ t0 < t1.

Consider the initial value problem for the system of non-instantaneous im-
pulsive differential equations (NIDE)

x′ = f(t, x) for t ∈ (tk, sk], k = 0, 1, 2, . . .

x(t) = φi(t, x(ti − 0)) for t ∈ (si, ti+1], i = 0, 1, 2, . . . ,

x(t0) = x0,

(1)

where x, x0 ∈ R
n, f : ∪∞

k=0[tk, sk] × R
n → R

n, φi : [si, ti+1] × R
n → R

n,
(i = 0, 1, 2, 3, . . . ).

Remark 1. The intervals (sk, tk+1], k = 0, 1, 2, . . . are called intervals
of non-instantaneous impulses and the functions φk(t, x, y), k = 0, 1, 2, . . . , are
called non-instantaneous impulsive functions.

Keeping in mind the meaning of t0 as an initial time of the modeled the
rate of change of the process, we will assume everywhere in the paper that the
initial time t0 is not in an interval of non-instantaneous impulses, i.e. we will
assume t0 ∈ ∪∞

k=0[sk, tk+1).

Consider the perturbed system of non-instantaneous impulsive differential
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equations

x′ = f(t, x) + F (t, x(t)) for t ∈ (tk, sk], k = 0, 1, 2, . . .

x(t) = φi(t, x(ti − 0)) + ψi(t, x(ti − 0)) for t ∈ (si, ti+1], i = 0, 1, 2, . . . ,

x(t0) = x0,

(2)

Also consider the corresponding IVP for ODE

x′ = f(t, x) + F (t, x) for t ∈ [τ, tp] with x(τ) = x̃0, (3)

where τ ∈ [sp−1, tp), p = 1, 2, . . . .
We will say condition (H1) and (H2) are satisfied if
(H1) The functions f, F ∈ C(∪∞

k=0[tk, sk],R
n) is such that for any initial

point (τ, x̃0) : tp ≤ τ < sp, x̃0 ∈ R
n, p is a non negative integer number , the

IVP for the system of ODE (3) has a solution x(t; τ, x̃0) ∈ C1([τ, sp],R
n).

(H2) The functions φk, ψk ∈ C([sk, tk+1]×R
n,Rn) and φk(t, 0) = 0, ψk(t, 0) =

0, t ∈ [sk, tk+1].

Remark 2. If tk = sk, k = 1, 2, . . . then the IVP for NIDE (1) reduces to
an IVP for impulsive differential equations (for example see the monographs [8],
[15] and the cited references therein). In this case at any point of instantaneous
impulse tk the amount of jump of the solution x(t) is given by Ik = φk(tk, x(tk+
0), x(tk − 0))− x(tk − 0).

Let J ⊂ R+ be a given interval. Introduce the following classes of functions

PC1(J) = {u : J → R
n : u ∈ C1(J ∩

(

∪∞
k=0 (sk, tk+1]

)

,Rn) :

u(tk) = u(tk − 0) = lim
t↑tk

u(t) <∞,

u(tk + 0) = lim
t↓tk

u(t) <∞, k : tk ∈ J},

PC(J) = {u : J → R
n : u ∈ C(J ∩

(

∪∞
k=0 (sk, tk+1]

)

,Rn) :

u(tk) = u(tk − 0) = lim
t↑tk

u(t) <∞,

u(tk + 0) = lim
t↓tk

u(t) <∞, k : tk ∈ J}.

Definition 1. Let h, h0 ∈ Γ. We say h0 is finer than h if there exists δ > 0
and a function φ ∈ K such that h0T, x) < δ implies h(t, x) ≤ φ(h0(t, x))), t ≥
0, xinRn.

Remark 3. According to the above description any solution of (1) is from
the class PC1([t0, b)), b ≤ ∞, i.e. any solution might have a discontinuity at
any point tk, k = 1, 2, . . . .
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Let ρ, t, T > 0 be constants, h ∈ Γ. Define sets:

K = {σ ∈ C(R+R+), strictly increasing and σ(0) = 0},

PCK = {σ : R+ ×R+ → R+, strictly increasing and σ(., u) ∈ PC(R+)

for each u ∈ R+ and σ(t, .) ∈ K for each t ∈ R+},

S(h,A) = {(t, x) ∈ R+ ×R
n : h(t, x) < A}, A > 0,

SC(h, ρ) = {(t, x) ∈ R+ ×R
n : h(t, x) ≥ ρ};

Γ(J) = {h : J ×R
n → R+, h(t, x) ∈ PC(J) for each x ∈ R

n,

h(t, .) ∈ C(Rn,R+) for each t ∈ J and inf h(t, x) = 0}

W (t, T, ρ) = {x ∈ R
n : h(s, x) < ρ for s ∈ [t, t+ T ]}..

Definition 2. Let h0, h ∈ Γ(J). Then we say that h0 is liner than h
if there exists a δ > 0 and a function φ ∈ K such that h0(t, x) < δ implies
h(t, x) ≤ φ(h0(t, x)), t ∈ J, x ∈ R

n.

We give a definition for integral stability of (1). In the definition below we
denote by x(t; t0, x0) ∈ PC1([t0,∞),Rn) any solution of (1).

Definition 3. . Let h, h0 ∈ Γ. The system of non-instantaneous impulsive
differential equations (1), is said to be (h0, h)-integrally stable if for every α > 0
and for any t0 ≥ 0, there exists a e function β = β(α) ∈ K such that for ev-
ery solution y(t; t0, x0) of the perturbed system of non-instantaneous impulsive
differential equations (2) the inequality

h(t, y(t; t0, x0)) < β, t ≥ t0

holds provided that the initial value x0 ∈ R
n satisfies

h0(t0, x0) < α,

and for every T > 0 the perturbations F (t, x) and ψk(t, x), k = 1, 2, . . . of the
right side parts of the system (2) satisfy

p
∑

i=0

∫

s∈Ωk

supx∈W (t0,T,β)||F (s, x)||ds

+

p−1
∑

k=0

sup
(t,x)∈(sk,tk+1]×R

n

: h(t,x)<β
||ψk(t, x)|| < α.

where p : t0 + T ∈ (tp, sp], Ωk = (tk, sk], and Ωp = (tp,min{t0 + T, sp}].
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Remark 4. We note that in the case when h0(t, x) ≡ ||x|| and h(t, x) ≡
||x|| the (h0, h)-integral stability reduces to integral stability, studied in [21].

In our further investigations we will use following comparison scalar non-
instantaneous impulsive differential equation

u′ = g1(t, u) for t ∈ (tk, sk], k = 0, 1, 2, . . .

u(t) = ξi(t, u(si − 0)) for t ∈ (si, ti+1], i = 0, 1, 2, . . . .
(4)

the scalar non-instantaneous impulsive differential equation

w′ = g2(t, w) for t ∈ (tk, sk], k = 0, 1, 2, . . .

w(t) = ηi(t, w(si)) for t ∈ (si, ti+1], i = 0, 1, 2, . . . ,
(5)

and its perturbed scalar non-instantaneous impulsive differential equation

w′ = g2(t, w) + q(t, w) for t ∈ (tk, sk], k = 0, 1, 2, . . .

w(t) = ηi(t, w(si)) + γi(t, w(si)) for t ∈ (si, ti+1], i = 0, 1, 2, . . . .
(6)

where u,w ∈ R, gi(t, 0) ≡ 0, i = 1, 2, ξk(t, 0) = 0, ηk(t, 0) = 0, k = 1, 2, . . . .
In our further investigations we will assume that solutions of the scalar

impulsive equations (4), (5), and (6) exist on [t0,∞) for any initial values.
We now introduce the class Λ of Lyapunov-like functions which will be used

to investigate the stability of the zero solution of the system IFrDE (1).

Definition 4. Let J ∈ R+ be a given interval, and ∆ ⊂ R
n, 0 ∈ ∆ be

a given set. We will say that the function V (t, x) : J × ∆ → R+, V (t, 0) ≡ 0
belongs to the class Λ(J,∆) if

1. The function V (t, x) is continuous on J/{sk ∈ J} × ∆ and it is locally
Lipschitzian with respect to its second argument;

2. For each sk ∈ J and x ∈ ∆ there exist finite limits

V (sk − 0, x) = lim
t↑sk

V (t, x), and V (sk + 0, x) = lim
t↓sk

V (t, x)

and V (sk − 0, x) = V (sk, x).

Definition 5. Let V ∈ Λ(J,Rn) and h0, h ∈ Γ(J). Then V (t, x) is said to
be

- h-positive definite if there exists ρ > 0 and a function b ∈ K such that
h(t, x) < ρ implies b(h(t, x)) ≤ V (t, x);
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- h0-descrescent if there exists a δ > 0 and a function a ∈ K such that
h0(t, x) < δ implies V (t, x) < a(h0(t, x));

- weakly h0-descrescent if there exists a δ > 0 and a function a ∈ PCK
such that h0(t, x) < δ implies V (t, x) < a(h0(t, x))

In this paper we will use piecewise continuous Lyapunov functions from
the introduced above class Λ([t0, T ),∆). We will define the generalized Dini
derivative of the function V (t, x) ∈ Λ([t0, T ),∆) along trajectories of solutions
of IVP for the system NIDE (1) by:

(1)D+V (t, x) = lim sup
h→0+

1

h

{

V (t, x)− V (t− h, x− hf(t, x))

}

for t ∈ (tk, sk), k = 0, 1, 2, . . . ,

(7)

where x ∈ ∆, and for any t ∈ (tk, sk) there exists ht > 0 such that t−h ∈ (tk, sk),
x− hf(t, x) ∈ ∆ for 0 < h ≤ ht.

In our further study we will use the following comparison result ([3]).

Lemma 1. [3] (Comparison result for NIDE). Assume the following con-
ditions are satisfied:

1. The function x∗(t) = x(t; t0, x0) ∈ PC1([t0, T ],∆) is a solution of the
NIDE (1) where ∆ ⊂ R

n, 0 ∈ ∆, x0 ∈ ∆ and t0, T ∈ R+, t0 < T, 0 ≤
t0 < t1 are given numbers.

2. The function V ∈ Λ([t0, T ],∆) and

(i) the inequality (1)D+V (t, x∗(t)) ≤ g1(t, V (t, x∗(t)) for t ∈
(

∪∞
k=0

(sk, tk+1)
)

∩ [t0, T ] holds;

(ii) for any k = 1, 2 . . . the inequalities

V (t, φk(t, x
∗(t))) ≤ ξk(t, V (sk−0, x∗(tk−0))) for t ∈ [t0, T ]∩(sk, tk+1]

hold.

Then for t ∈ [t0, T ] the inequality

V (t, x∗(t)) ≤ u∗(t) (8)

holds where u∗(t) is the maximal solution of NIDE (4) on [t0, T ].

Remark 5. Note the claims of Lemma 1 is true if in Condition 1 the
initial time t0 is in [sp−1, tp) where p is any natural number.
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3. Main Results

First we study the stability properties of the zero solution of nonlinear differ-
ential equations with non-instantaneous impulses.

Theorem 1. Let the following conditions be satisfied:

1. Conditions (H1), (H2) are satisfied.

2. Functions g1, g2 ∈ C(∪∞
k=0[tk, sk],R), gi(t, 0) = 0, i = 1, 2]

3. Functions ξk, ηk ∈ C([sk, tk+1]×R
n,Rn) and ξk(t, 0) = 0, ηk(t, 0) = 0, t ∈

[sk, tk+1].

4. h0, h ∈ Γ(R+), h0 is finer than h and there exists a ρ0 : 0 < ρ0 < ρ such
that h(sk, x) < ρ0 implies h(sk + 0, φk(sk, x)) < ρ, k = 0, 1, 2 . . . .

5. There exists a function V1 : [0,∞) × R
n → R+, V1 ∈ Λ that is h0-

decrescent and

(i) for any number t ≥ 0the inequality

D+
(1)V1(t, ψ(t)) ≤ g1(t, V1(t, ψ(t))), t ∈

(

[0, s0]∪
∞
k=1(tk, sk)

)

, (t, x) ∈ S(h, ρ),

holds, where ρ > 0 is a constant.

(ii) V1(t, φk(t, x)) ≤ ξk(V1(sk, x)), t ∈ (sk, tk+1] for (sk, x) ∈ S(h, ρ), k =
1, 2, . . . .

6. For any number µ > 0 there exists a function V
(µ)
2 : [−r,∞)×Rn → R+,

V
(µ)
2 ∈ Λ such that

(iii) b(h(t, x)) ≤ V
(µ)
2 (t, x) ≤ a(h0(t, x)) for (t, x) ∈ [−r,∞)×Rn,

where a, b ∈ K and limu→∞b(u) = ∞.

(iv) for any number t ≥ 0 the inequality

D+
(1)V1(t, x) +D+

(1)V
(µ)
2 (t, x) ≤ g2

(

t, V1(t, x) + V
(µ)
2 (t, x)

)

t ∈
(

[0, s0] ∪
∞
k=1 (tk, sk)

)

, (t, x) ∈ S(h, ρ),

holds;

(v) V1(t, φk(t, x)) + V
(µ)
2 (t, φk(t, x)) ≤ ηk

(

V1(sk, x) + V
(µ)
2 (sk, x)

)

, t ∈

(sk, tk+1]

for (sk, x) ∈ S(h, ρ)
⋂

SC(h0, µ), k = 1, 2, . . . .
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7. Zero solution of the scalar impulsive differential equation (4) is equi-
stable.

8. Scalar impulsive differential equation (5) is uniform-integrally stable.

Then system of non-instantaneous impulsive differential equations (1) is
(h0, h)-uniform-integrally stable.

Proof. Since function V1(t, x) is h0-decrescent, there exist a constant ρ1 ∈
(0, ρ) and a function ψ1 ∈ K such that h0(t, x) < ρ1 implies that

V1(t, x) ≤ ψ1(h0(t, x)). (9)

Since h0(t, x) is uniformly finer than h(t, x), there exist a constant ρ0 ∈
(0, ρ1) and a function ψ2 ∈ K such that h0(t, x) < ρ0 implies that h(t, x) ≤
ψ2(h0(t, x)) where ψ2(ρ0) < ρ1.

According to Condition 4 inequality h0(t0, x0) < ρ0 implies

h(t0, x0) ≤ ψ2(h0(t0, x0)). (10)

Let t0 ≥ 0 be a fixed point. Choose a number α > 0 such that α < ρ0.

According to condition 6 of Theorem 1 there exists function V
(α)
2 (t, x) with

Lipshitz constant M2. Let M1 be Lipshitz constant of function V (t, x).
Denote (M1 +M2)α = α1. Without loss of generality we assume α1 < b(ρ).
Since the zero solution of the scalar non-instantaneous impulsive differential

equation (4) is equi-stable, there exists a function δ1 = δ1(t0, α1) > 0 such that
the inequality |u0| < δ1 implies

|u(t; t0, u0)| <
α1

2
, t ≥ t0, (11)

where u(t; t0, u0) is a solution of (4).
Since the function ψ1 ∈ K there exists δ2 = δ2(δ1) > 0, δ2 < ρ1 such that

for |u| < δ2 the inequality
ψ1(u) < δ1 (12)

holds.
Since the scalar non-instantaneous impulsive differential equation (5) is

uniform-integrally stable, there exists β1 = β1(α1) ∈ K, b(ρ) > β1 ≥ α1 such
that for every solution w(t; t0, w0) of the perturbed equation (6) the inequality

|w(t; t0, w0))| < β1, t ≥ t0, (13)

holds, provided that
|w0| < α1 (14)



EVENTUAL STABILITY WITH TWO MEASURES... 759

and for every T > 0

∫ t0+T

t0

supw: |w|<β1
|q(s,w)|ds +

∑

k: t0<τk≤t0+T

supw: |w|<β1
|γk(w)| < α1. (15)

Since the function b ∈ K , lims→∞b(s) = ∞, and ψ2(α) < ψ2(ρ0) < ρ1 < ρ
we could choose β = β(β1) > 0, ρ > β > α, β > ψ2(α) such that

b(β) ≥ β1. (16)

Since the functions a ∈ K, ψ2 ∈ K, and β > ψ2(α) we can find δ3 =
δ3(α1, β) > 0, α < δ3 < min(δ2, ρ0) such that the inequalities

a(δ3) <
α1

2
, ψ2(δ3) < β (17)

hold.

From (10) and (17) follows that h0(t0, x0) < α implies

h(t0, x0) ≤ ψ2(h0(t0, x0)) < ψ2(α) < ψ2(δ3) < β,

i.e. h(t, x) < β for t ∈ [t0 − r, t0].

Now let the initial value x0 ∈ R
n be such that

h0(t0, x0) < α (18)

and the perturbations F (t, x) and ψk(t, x), k = 1, 2, . . . in NIDE (2) be such
that

p
∑

i=0

∫

s∈Ωk

supx∈W (t0,T,β)||F (s, x)||ds

+

p−1
∑

k=0

sup
(t,x)∈(sk ,tk+1]×R

n

: h(t,x)<β
||ψk(t, x)|| < α (19)

for every T > 0.

Let y(t) = y(t; t0, φ) be a solution of (2), where the initial value and the
perturbations satisfy (18) and (19).

We will prove that if inequalities (18) and (19) are satisfied then

h(t, y(t; t0, φ)) < β, t ≥ t0. (20)
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Suppose it is not true. Therefore there exists a point t∗ > t0 such that

h(t∗, y(t∗; t0, φ)) ≥ β, h(t, y(t; t0, φ)) < β, t ∈ [t0, t
∗). (21)

Case 1. Let there exists a number k : t∗ ∈ (tk, sk]. Then from the continuity
of the solution y(t; t0, φ) at point t

∗ follows that h(t∗, y(t∗; t0, φ)) = β.
If we assume that h0(t

∗, y(t∗)) ≤ δ3 then from the choice of δ3 and inequality
(17) it follows h(t∗, y(t∗)) ≤ ψ2(h0(t

∗, y(t∗)) ≤ ψ2(δ3) < β that contradicts (21).
Therefore

h0(t
∗, y(t∗)) > δ3, h0(t0, x0) < α < δ1. (22)

Case 1.1. Let there exists a point t∗0 ∈ (t0, t
∗), t∗0 6= sk, k = 1, 2, . . . such

that δ3 = h0(t
∗
0, y(t

∗
0)) and (t, y(t)) ∈ S(h, β)

⋂

Sc(h0, δ3). Since β < ρ and
δ3 > α it follows that

(t, y(t)) ∈ S(h, ρ)
⋂

Sc(h0, α), t ∈ [t∗0, t
∗). (23)

Define a function φ∗(t) = y(t) for t ∈ [t∗0 − r, t∗0] and let r1(t; t
∗
0, u0) be

the maximal solution of impulsive scalar differential equation (4) where u0 =
V1(t

∗
0, x0). Let x∗(t) ≡ x∗(t; t∗0, x

∗
0) be the solution of the NIDE (1). From

conditions (i), (ii) of Theorem 1 according to Lemma 1 follows that

V1(t, x
∗(t)) ≤ r1(t; t

∗
0, u0), t ∈ [t∗0, t

∗]. (24)

From the choice of the point t∗0 it follows that h0(t
∗
0, φ

∗(t∗0)) = h0(t
∗
0, y(t

∗
0)) =

δ3 < δ2. According to inequalities (9) and (12) we obtain

u0 = V1(t
∗
0, x

∗
0) ≤ ψ1(h0(t

∗
0, x

∗
0)) < δ1.

From inequalities (11) and (24) it follows that V1(t, x
∗(t)) ≤ r1(t; t

∗
0, u0) <

α1

2
for t ∈ [t∗0, t

∗], or

V1(t
∗
0, x

∗
0) = V1(t

∗
0, x

∗
0) <

α1

2
. (25)

From inequality (17) and condition (iii) of Theorem 1 follows that

V
(α)
2 (t∗0, y(t

∗
0)) < a(h0(t

∗
0, y(t

∗
0))) = a(δ1) <

α1

2
. (26)

Consider function V : [−r,∞) ×Rn → R+, V ∈ Λ defined by equality

V (t, x) = V1(t, x) + V
(α)
2 (t, x). (27)

Function V (t, x) satisfies the conditions of Lemma 1. Indeed, let point
t ∈ [t∗0, t

∗], t ∈ (tk, sk] and (t, x) ∈ S(h, β)
⋂

Sc(h0, α). Then using the Lipshitz
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conditions for functions V1(t, x) and V
(α)
2 (t, x), and condition (iv) of Theorem

1 we obtain

D+
(2)
V (t, ψ(t)) = D+

(2)
V1(t, x) +D+

(2)
V

(α)
2 (t, x)

= lim sup
ǫ→0+

1

ǫ

{

{

V (t+ ǫ, x+ ǫ
(

f(t, x) + F (t, x)
)

− V (t, x)
}

≤ lim sup
ǫ→0+

1

ǫ

{

V (t+ ǫ, x+ ǫf(t, x)
}

+ lim sup
ǫ→0+

1

ǫ

{

V (t+ ǫ, x+ ǫ[f(t, x)

+F (t, x)− V (t+ ǫ, x+ ǫf(t, x)
}

≤ g2(t, V (t, x)) + (M1 +M2)||F (t, x)||

≤ g2(t, V (t, x)) + (M1 +M2)supx∈W (t∗
0
−r,T ∗,β)||F (t, x)||, (28)

where T ∗ = t∗ − t∗0 + r.
Let sk ∈ (t∗0, t

∗), x ∈ R
n be such that (sk, x) ∈ S(h, β)

⋂

Sc(h0, α). Accord-
ing to condition (v) of Theorem 1 we have

V (t, φk(t, x) + ψk(t, x))

= V (t, φk(t, x)) +
{

V (t, φk(t, x) + ψk(t, x))− V (t, φk(t, x))
}

≤ ηk(V (sk, x)) + (M1 +M2)||ψk(t, x)||

≤ ηk(V (sk, x)) + (M1 +M2)supt,x: h(t,x)<β ||ψk(t, x)||. (29)

Consider the scalar impulsive differential equation (6) where the perturba-
tions of the right parts depend only on t and they are given by the equalities

q(t) = (M1 +M2)supx∈W (t∗
0
−r,T ∗,β)||F (t, x)||,

γk = (M1 +M2)supt,x: h(t,x)<β ||ψk(t, x)||.

According to above notations and inequality (19) for T = t∗ − t∗0 we obtain

p
∑

i=0

∫

s∈Ωk

q(s)ds+

p−1
∑

k=0

γk < (M1 +M2)α = α1. (30)

Let r∗(t; t∗0, w
∗
0) be the maximal solution of (6) through the point (t∗0, w

∗
0),

where w∗
0 = V1(t

∗
0, y(t

∗
0)) + V

(α)
2 (t∗0, y(t

∗
0)), and perturbations q(t) and γk are

defined above and satisfy inequality (30). According to inequalities (33), (34),
and Lemma 1 the inequality

V (t, y(t)) = V1(t, y(t)) + V
(α)
2 (t, y(t)) ≤ r∗(t; t∗0, w

∗
0), t ∈ [t∗0, t

∗] (31)
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holds.
From inequalities (25) and (26), the definition of point w∗

0, and inequality
(30) follows the validity of (13) for the solution r∗∗(t; t∗0, w

∗
0), i.e.

r∗∗(t; t∗0, w
∗
0) < β1, t ≥ t∗0. (32)

From inequalities (31), (32), the choice of point t∗, and condition (iii) of The-
orem 1 we obtain

b(β) ≥ β1 > r∗∗(t∗; t∗0, w
∗
0) = r∗(t∗; t∗0, w

∗
0)

≥ V (t∗, y(t∗)) = V1(t
∗, y(t∗)) + V

(α)
2 (t∗, y(t∗))

≥ V
(α)
2 (t∗, y(t∗)) ≥ b(h(t∗, y(t∗))) = b(β).

The obtained contradiction proves the validity of the inequality (20) for
t ≥ t0.

Case 1.2. Let there exist a point sk ∈ (t0, t
∗) such that δ3 < h0(sk+0, y(sk+

0; t0, x0)), δ3 > h0(τk, y(sk; t0, x0)) and (23) is true.
We choose a number δ̃3 : δ3 < δ̃3 < β such that δ̃3 = h0(t

∗
0, y(t

∗
0; t0, x0))

and t∗0 ∈ (t0, t
∗). We repeat the proof of Case 1.1, where instead of δ3 we use

δ̃3 and obtain a contradiction.
Case 2. Let there exists a natural number k such that h(t, y(t)) < β for

t ≤ sk and h(sk, y(sk + 0)) = h(sk, φk(sk, y(sk)) + ψk(sk, y(sk))) > β.
We repeat the proof of case 1 as in this case we choose β = β(β1) > 0, such

that b(β) ≥ supk{ηk(β1)} .
As in the proof of case 1 we obtain the validity of inequalities (32) and (31).

We apply conditions (iii) and (v) of Theorem 1 and obtain

b(β) ≥ ηk(β1) > ηk(r
∗(sk; t

∗
0, w

∗
0)) ≥ ηk(V (sk, y(sk)))

= ηk(V1(sk, y(sk)) + V
(α)
2 (sk, y(sk))))

≥ V1(sk, φk(sk, y(sk)) + ψk(sk, y(sk)))

+V
(α)
2 (sk, φk(sk, y(sk)) + ψk(sk, y(sk)))

≥ V
(α)
2 (sk, φk(sk, y(sk)) + ψk(sk, y(sk)))

≥ b(h(sk, φk(sk, y(sk)) + ψk(sk, y(sk)))) > b(β).

The obtained contradiction proves the validity of the inequality (20) in this
case.

Inequality (20) proves (h0, h)-uniform-integral stability of the considered
system of non-instantaneous impulsive equations.
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