IJPAM: Volume 117, No. 1 (2017)

Title

HYPERCYCLIC WEIGHTS ON HYPERGROUPS

Authors

Chung-Chuan Chen$^1$, Seyyed Mohammad Tabatabaie$^2$
$^1$Department of Mathematics Education
National Taichung University of Education
Taichung 403, TAIWAN
$^2$Department of Mathematics
University of Qom
Qom, IRAN

Abstract

Let $K$ be a locally compact hypergroup and $1\leq p < \infty$. In this paper, we study sequences of operators, generated by a weight and a sequence of elements of $K$, on the Lebesgue space $L^p(K)$. A weight is called hypercyclic if its related sequence of operators is hypercyclic. Some sufficient and necessary conditions for a weight to be hypercyclic are obtained. By focusing on the elements of center of $K$, we refine the results and give the characterization for such a weight to be hypercyclic. Hypercyclicity on strong hypergroups is investigated as well.

History

Received: 2017-08-21
Revised: 2017-09-12
Published: November 29, 2017

AMS Classification, Key Words

AMS Subject Classification: 43A62, 47A16, 43A15
Key Words and Phrases: locally compact hypergroup, hypercyclicity, topological transitivity, chaos, $L^p$-space

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
F. Bayart and É. Matheron, Dynamics of Linear Operators, Cambridge Tracts in Math. 179, Cambridge University Press, Cambridge (2009).

2
G.D. Birkhoff, Démonstration d'un théorème élémentaire sur les fonctions entières, C.R. Acad. Sci.Paris 189 (1929) 473-475.

3
W.R. Bloom, H. Heyer, Harmonic Analysis of Probability Measures on Hypergroups, De Kruyter, Berlin (1995).

4
C-C. Chen, Chaotic weighted translations on groups, Arch. Math. 97 (2011), 61-68.

5
C-C. Chen and C-H. Chu, Hypercyclic weighted translations on groups, Proc. Amer. Math. Soc., 139 (2011), 2839-2846.

6
C-C. Chen and S.M. Tabatabaie, Chaotic operators on hypergroups, Submitted.

7
C.F. Dunkl, The measure algebra of a locally compact hypergroup, Trans. Amer. Math. Soc., 179 (1973), 331-348.

8
C.F. Dunkl and D.E. Ramirez, A family of countably compact $P_*$-hypergroups, Trans. Amer. Math. Soc., 202 (1975), 339-356.

9
K.-G. Grosse-Erdmann, Universal families and hypercyclic operators, Bull. Amer. Math. Soc. (N.S.) 36 (1999), 345-381.

10
K.-G. Grosse-Erdmann and A.P. Manguillot, Linear Chaos, Springer-Verlag, London (2011).

11
S. Grosser and M. Moskowitz, Representation theory of central topological groups. Trans. Amer. Math. Soc., 129 (1967), 361-390.

12
E. Hewitt and K.A. Ross, Abstract Harmonic Analysis, Vol. II, Springer, Berlin-New York (1970).

13
R.I. Jewett, Spaces with an abstract convolution of measures, Adv. Math., 18 (1975), 1-101.

14
R. Lasser, Orthogonal polynomials and hypergroups, Rend. Math., 3 (1983), 185-209.

15
K.A. Ross, Centers of hypergroups, Trans. Amer. Math. Soc., 243 (1978), 251-269.

16
R. Spector, Apercu de la theorie des hypergroups, In: Analyse Harmonique sur les Kroups de Lie, 643-673, Lec. Notes Math. Ser., 497, Springer (1975).

17
R. Spector, Measures invariantes sur les hypergroups, Trans. Amer. Math. Soc., 239 (1978), 147-165.

How to Cite?

DOI: 10.12732/ijpam.v117i1.12 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 117
Issue: 1
Pages: 125 - 142


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).