IJPAM: Volume 117, No. 1 (2017)

Title

INTEGRAL OPERATOR IN AMALGAM

Authors

Suket Kumar
Department of Mathematics
NIT Hamirpur
H.P., 177005, INDIA

Abstract

Boundedness of the sum of two Hardy-type operators with not necessarily non-negative coefficients has been discussed between amalgams $\ell^q(X_u) - \ell^b(L^r, v)$ for the case $1 < r, q, b < \infty$ where $X_u$ is weighted Banach function space.

History

Received: 2016-11-09
Revised: 2017-07-05
Published: November 29, 2017

AMS Classification, Key Words

AMS Subject Classification: 26D10, 26D15
Key Words and Phrases: boundedness, amalgams, Banach function space, Hardy-type operator

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, 1988.

2
E.I. Berezhnoi, Sharp estimates of operators on the cone of ideal spaces, Proc. Steklov Inst. Math. 3 (1994), 3-34.

3
C. Carton-Lebrun, H.P. Heinig and S.C. Hofmann, Integral operators on weighted amalgams, Studia Math. 109(2) (1994), 133-157.

4
J.J.F. Fournier and J. Stewart, Amalgams of $L^p$ and $\ell^q$, Bull. Amer. Math. Soc. 13 (1985), 1-21.

5
F. Holland, Harmonic analysis on amalgam of $L^p$ and $\ell^q$, J. London Math. Soc. 10(2) (1975), 295-305.

6
P. Jain and S. Kumar, Boundedness of Hardy operators on generalized amalgams, Math. Inequal. Appl. 12(3), (2009), 549-562.

7
P. Jain and S. Kumar, Weighted inequalities of Hardy-type on amalgams, Real Anal. Exchange 34(2) (2008/2009), 483-500.

8
A. Kufner and L.-E. Persson, Weighted Inequalities of Hardy-Type, World Scientific, New Jersey/London/Singapore/Hong Kong, 2003.

9
S. Kumar, A Hardy-type inequality in two dimensions, Indag. Math. 20(2) (2009), 247-260.

10
S. Kumar, Hardy inequality in Banach function space, IJPAM, 85(4), 2013, 629-633.

11
E. Lomakina and V.D. Stepanov, On the Hardy type integral operators in Banach function spaces, Publ. Math. 42 (1998), 165-194.

12
W.A.J. Luxemburg, Banach Function Spaces, Ph.D. Thesis, Delft Institute of Technology, Aseen (Netherlands), 1955.

13
N. Wiener, On the representation of functions by trigonometrical integrals, Math. Z. 24 (1926) 575-616.

14
N. Wiener, Tauberian theorems, Ann. of Math. 33 (1932), 1-100.

15
P.A. Zharov, On a two-weight inequality, Generalization of inequalities of Hardy and Poincaré (Russian), Trudy Mat. Inst. Steklov 194 (1992), 97-110; translation in Proc. Steklov Inst. Math. 194(4) (1993), 101-114.

How to Cite?

DOI: 10.12732/ijpam.v117i1.2 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 117
Issue: 1
Pages: 11 - 18


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).