IJPAM: Volume 117, No. 1 (2017)
Title
INTEGRAL OPERATOR IN AMALGAMAuthors
Suket KumarDepartment of Mathematics
NIT Hamirpur
H.P., 177005, INDIA
Abstract
Boundedness of the sum of two Hardy-type operators with not necessarily non-negative coefficients has been discussed between amalgams


History
Received: 2016-11-09
Revised: 2017-07-05
Published: November 29, 2017
AMS Classification, Key Words
AMS Subject Classification: 26D10, 26D15
Key Words and Phrases: boundedness, amalgams, Banach function space, Hardy-type operator
Download Section
Download paper from here.You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.
Bibliography
- 1
- C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, 1988.
- 2
- E.I. Berezhnoi, Sharp estimates of operators on the cone of ideal spaces, Proc. Steklov Inst. Math. 3 (1994), 3-34.
- 3
- C. Carton-Lebrun, H.P. Heinig and S.C. Hofmann, Integral operators on weighted amalgams, Studia Math. 109(2) (1994), 133-157.
- 4
-
J.J.F. Fournier and J. Stewart, Amalgams of
and
, Bull. Amer. Math. Soc. 13 (1985), 1-21.
- 5
-
F. Holland, Harmonic analysis on amalgam of
and
, J. London Math. Soc. 10(2) (1975), 295-305.
- 6
- P. Jain and S. Kumar, Boundedness of Hardy operators on generalized amalgams, Math. Inequal. Appl. 12(3), (2009), 549-562.
- 7
- P. Jain and S. Kumar, Weighted inequalities of Hardy-type on amalgams, Real Anal. Exchange 34(2) (2008/2009), 483-500.
- 8
- A. Kufner and L.-E. Persson, Weighted Inequalities of Hardy-Type, World Scientific, New Jersey/London/Singapore/Hong Kong, 2003.
- 9
- S. Kumar, A Hardy-type inequality in two dimensions, Indag. Math. 20(2) (2009), 247-260.
- 10
- S. Kumar, Hardy inequality in Banach function space, IJPAM, 85(4), 2013, 629-633.
- 11
- E. Lomakina and V.D. Stepanov, On the Hardy type integral operators in Banach function spaces, Publ. Math. 42 (1998), 165-194.
- 12
- W.A.J. Luxemburg, Banach Function Spaces, Ph.D. Thesis, Delft Institute of Technology, Aseen (Netherlands), 1955.
- 13
- N. Wiener, On the representation of functions by trigonometrical integrals, Math. Z. 24 (1926) 575-616.
- 14
- N. Wiener, Tauberian theorems, Ann. of Math. 33 (1932), 1-100.
- 15
- P.A. Zharov, On a two-weight inequality, Generalization of inequalities of Hardy and Poincaré (Russian), Trudy Mat. Inst. Steklov 194 (1992), 97-110; translation in Proc. Steklov Inst. Math. 194(4) (1993), 101-114.
How to Cite?
DOI: 10.12732/ijpam.v117i1.2 How to cite this paper?Source: International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 117
Issue: 1
Pages: 11 - 18
Google Scholar; DOI (International DOI Foundation); WorldCAT.
This work is licensed under the Creative Commons Attribution International License (CC BY).