IJPAM: Volume 117, No. 1 (2017)

Title

ON $3$-DIMENSIONAL $\psi$-RECURRENT $(LCS)_{n}$-MANIFOLDS

Authors

Amit Prakash$^1$, Archana Srivastava$^2$, Mobin Ahmad$^3$
$^1$Department of Mathematics
National Institute of Technology
Kurukshetra, Haryana, 136119, INDIA
$^2$Department of Mathematics
S.R. Institute of Management & Technology
BKT Lucknow, 227 202, INDIA
$^3$Department of Mathematics
Integral University
Kursi Road Lucknow
226 026, INDIA

Abstract

The object of this paper is to study 3-dimensional $\psi$-recurrent $(LCS)_{n}$-manifold and prove that it is a manifold of constant curvature and finally we prove that a 3-dimensional $(LCS)_{n}$-manifold is locally $\psi$-concircularly symmetric if and only if the scalar curvature $r$ is constant.

History

Received: 2017-05-10
Revised: 2017-06-14
Published: November 29, 2017

AMS Classification, Key Words

AMS Subject Classification: 53C10, 53C15, 53C25
Key Words and Phrases: 3-dimensional $(LCS)_{n}$-manifold, $\eta$-Einstein manifold, $\varphi$-recurrent manifold, $\varphi$-concircularly symmetric

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
A. A. Shaikh, On Lorentzian almost para-contact manifolds with a structure of the concircular type, Kyungpook Math. J., 43 (2003), 305-314.

2
A. A. Shaikh, K. K. Baishya, On $\psi$-symmetric L P-Sasakian manifolds, Yokohama Math. J., 52 (2006), 97-112.

3
B. O'neill, Semi-Riemannian Geometry with Applications to Relativity'', Academic Press, Inc., New York (1983).K. Matsumoto, On Lorentzian almost para-contact manifolds, Bull. Yama-gata Univ. Nat. Sci., 12 (1989), 151-156.

4
A. A. Shaikh, T. Basu, and S. Eyasmin, On the Existence of $\psi$-Recurrent $\left( LCS\right) _{n}$ Manifolds, Extracta Mathematica, 23, No. 1 (2008), 71-83.

5
C. Özgür and U. C. De, On the quasi-conformal curvature tensor of a Kenmotsu manifold, Mathematica Pannonica, 17, No. 2 (2006), 221-228.

6
D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math.No. 509. Springer, 1976.

7
J. B. Jun, U. C. De and G. Pathak, On Kenmotsu manifolds, J. Korean Math. Soc., 42 (2005), 435-445.

8
K. Kenmotsu. A class of almost contact Riemannian manifolds, Tohoku Math. J., 24 (1972), 93-103.

9
K. Yano, Concircular geometry, I, Proc. Imp. Acad., Tokyo, 16 (1940), 195-200.

10
S. Tanno, Isometric Immersions of Sasakian manifold in spheres, Kodai Math. Sem. Rep., 21 (1969), 448-458.

11
T. Takahashi, Sasakian $\psi$-symmetric spaces, Tohoku Math. J., 29 (1977), 91-113.

12
U. C. De and G. Pathak, On $3$-dimensional Kenmotsu Manifolds, Indian J. Pure Appl. Math., 35, No. 2 (2004), 159-165.

13
U. C. De, A. A. Shaikh, and S. Biswas, On $\psi$-Recurrent Sasakian manifolds, NoviSad J. Math., 33, No. 2 (2003),43-48.

14
U. C. De, A. Yildiz and A. F. Yaliniz On $\psi$-Recurrent Kenmotsu manifolds, Turk. J. Math., 33 (2009), 17-25.

15
A. A. Shaikh and U. C. De, On $3$-dimensional LP-Sasakian manifolds, Soochow J. of Mathematics, 26, No. 1 (2000), 359-368.

How to Cite?

DOI: 10.12732/ijpam.v117i1.6 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 117
Issue: 1
Pages: 59 - 67


$3$-DIMENSIONAL $\psi$-RECURRENT $(LCS)_{n}$-MANIFOLDS%22&as_occt=any&as_epq=&as_oq=&as_eq=&as_publication=&as_ylo=&as_yhi=&as_sdtAAP=1&as_sdtp=1" title="Click to search Google Scholar for this entry" rel="nofollow">Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).