IJPAM: Volume 117, No. 1 (2017)
Title
ON


Authors
Amit Prakash



National Institute of Technology
Kurukshetra, Haryana, 136119, INDIA

S.R. Institute of Management & Technology
BKT Lucknow, 227 202, INDIA

Integral University
Kursi Road Lucknow
226 026, INDIA
Abstract
The object of this paper is to study 3-dimensional




History
Received: 2017-05-10
Revised: 2017-06-14
Published: November 29, 2017
AMS Classification, Key Words
AMS Subject Classification: 53C10, 53C15, 53C25
Key Words and Phrases: 3-dimensional -manifold,
-Einstein manifold,
-recurrent manifold,
-concircularly symmetric
Download Section
Download paper from here.You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.
Bibliography
- 1
- A. A. Shaikh, On Lorentzian almost para-contact manifolds with a structure of the concircular type, Kyungpook Math. J., 43 (2003), 305-314.
- 2
- A. A. Shaikh, K. K. Baishya, On
-symmetric L P-Sasakian manifolds, Yokohama Math. J., 52 (2006), 97-112.
- 3
- B. O'neill, Semi-Riemannian Geometry with Applications to Relativity'', Academic Press, Inc., New York (1983).K. Matsumoto, On Lorentzian almost para-contact manifolds, Bull. Yama-gata Univ. Nat. Sci., 12 (1989), 151-156.
- 4
- A. A. Shaikh, T. Basu, and S. Eyasmin, On the Existence of
-Recurrent
Manifolds, Extracta Mathematica, 23, No. 1 (2008), 71-83.
- 5
- C. Özgür and U. C. De, On the quasi-conformal curvature tensor of a Kenmotsu manifold, Mathematica Pannonica, 17, No. 2 (2006), 221-228.
- 6
- D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math.No. 509. Springer, 1976.
- 7
- J. B. Jun, U. C. De and G. Pathak, On Kenmotsu manifolds, J. Korean Math. Soc., 42 (2005), 435-445.
- 8
- K. Kenmotsu. A class of almost contact Riemannian manifolds, Tohoku Math. J., 24 (1972), 93-103.
- 9
- K. Yano, Concircular geometry, I, Proc. Imp. Acad., Tokyo, 16 (1940), 195-200.
- 10
- S. Tanno, Isometric Immersions of Sasakian manifold in spheres, Kodai Math. Sem. Rep., 21 (1969), 448-458.
- 11
- T. Takahashi, Sasakian
-symmetric spaces, Tohoku Math. J., 29 (1977), 91-113.
- 12
- U. C. De and G. Pathak, On
-dimensional Kenmotsu Manifolds, Indian J. Pure Appl. Math., 35, No. 2 (2004), 159-165.
- 13
- U. C. De, A. A. Shaikh, and S. Biswas, On
-Recurrent Sasakian manifolds, NoviSad J. Math., 33, No. 2 (2003),43-48.
- 14
- U. C. De, A. Yildiz and A. F. Yaliniz On
-Recurrent Kenmotsu manifolds, Turk. J. Math., 33 (2009), 17-25.
- 15
- A. A. Shaikh and U. C. De, On
-dimensional LP-Sasakian manifolds, Soochow J. of Mathematics, 26, No. 1 (2000), 359-368.
How to Cite?
DOI: 10.12732/ijpam.v117i1.6 How to cite this paper?Source: International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 117
Issue: 1
Pages: 59 - 67
-DIMENSIONAL
-RECURRENT
-MANIFOLDS%22&as_occt=any&as_epq=&as_oq=&as_eq=&as_publication=&as_ylo=&as_yhi=&as_sdtAAP=1&as_sdtp=1" title="Click to search Google Scholar for this entry" rel="nofollow">Google Scholar;
DOI (International DOI Foundation);
WorldCAT.
This work is licensed under the Creative Commons Attribution International License (CC BY).