IJPAM: Volume 117, No. 1 (2017)

Title

UPPER AND LOWER
$(I,J)$-CONTINUOUS MULTIFUNCTIONS

Authors

E. Rosas$^1$, C. Carpintero$^2$, J. Moreno$^3$
$^{1,2}$Departamento de Matemática
Universidad de Oriente
Cumaná, VENEZUELA
$^1$Departamento de Ciencias Naturales y Exactas
Universidad de la Costa
Barranquilla, COLOMBIA
$^2$Universidad Autónoma del Caribe
Barranquilla, COLOMBIA
$^3$Departamento de Matemática
Facultad de Ciencias Básicas
Universidad del Atlántico
Barranquilla, COLOMBIA

Abstract

The purpose of the present paper is to introduce, study and characterize upper and lower nearly $(I,J)$-continuous multifunctions. Also, we investigate its relation with another class of continuous multifunctions.

History

Received: A2017-06-09
Revised: 2017-11-21
Published: November 29, 2017

AMS Classification, Key Words

AMS Subject Classification: 54C10, 54C08, 54C05, 54C60
Key Words and Phrases: nearly $(I,J)$-continuous multifunctions, $I$-open set, $I$-closed set, lower nearly $(I,J)$-continuous multifunctions, upper almost nearly $(I,J)$-continuous multifunctions

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
M.E. Abd El-Monsef, E.F. Lashien, A.A. Nasef, On $I$-open sets and $I$-continuos functions Kyungpook Math. J., 32, No. 1 (1992), 21-30.

2
M. Akdag, On upper and lower $I$-continuos multifunctions, Far East J. Math. Sci., 25, No. 1 (2007), 49-57.

3
A. Al-Omari and M. S. M. Noorani, Contra-$I$-continuous and almost $I$-continuous functions, Int. J. Math. Math. Sci., bf 9 (2007), 169-179, doi: https://doi.org/10.1155/2007/40469.

4
D. Andrijevic, Semi-preopen sets, Mat. Vesnik, 38 (1986), 24-32.

5
C. Arivazhagi and N. Rajesh, Nearly $J$-continuous multifunctions, Bol. Soc. Paran. Mat., 37, No. 1 (2019), 33-38.

6
D. Carnahan, Locally nearly compact spaces, Boll. Un. Mat. Ital., 4, No. 6 (1972), 143-153.

7
C. Carpintero, E. Rosas, J. Moreno, More on upper and lower almost nearly $I$-continuous multifunctions, International Journal of Pure and Applied Mathematics, To appear.

8
E. Ekici, Nearly continuous multifunctions, Acta Math. Univ. Comenianae, 72 (2003), 229-235.

9
E. Ekici, Almost nearly continuous multifunctions, Acta Math. Univ. Comenianae, 73 (2004), 175-186.

10
D.S. Jankovic, T.R. Hamlett, New topologies from old via ideals, Amer. Math. Montly, 97, No. 4 (1990), 295-310, doi: https://doi.org/10.2307/2324512.

11
N. Levine, Semi open sets and semi-continuity in topological spaces, Amer. Math. Mpontly, 70 (1963), 36-41.

12
K. Kuratowski, Topology, Academic Press, New York, 1966.

13
A.S. Mashhour, M.E. Abd El-Monsef, S, N. El-Deep, on precontinuous and weak precontinuous mappings, Proced. Phys. Soc. Egyp, 53 (1982), 47-53.

14
R.E. Simithson, Almost and weak continuity for multifunctions, Bull. Calcutta Math. Soc., bf 70 (1978), 383-390.

15
M. Stone, Applications of the theory of boolean rings to general topology, Trans. Amer. Math. Soc., 41 (1937), 374-381.

16
R. Vaidyanathaswamy, The localisation theory in set topology, Proc. Indian Acad. Sci., 20 (1945), 51-61.

17
I. Zorlutuna, $I$-continuous multifunctions, Filomat, 27, No. 1 (2013), 155-162, doi: https://doi.org/10.2298/FIL1301165Z.

How to Cite?

DOI: 10.12732/ijpam.v117i1.9 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 117
Issue: 1
Pages: 87 - 97


$(I,J)$-CONTINUOUS MULTIFUNCTIONS%22&as_occt=any&as_epq=&as_oq=&as_eq=&as_publication=&as_ylo=&as_yhi=&as_sdtAAP=1&as_sdtp=1" title="Click to search Google Scholar for this entry" rel="nofollow">Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).