IJPAM: Volume 117, No. 2 (2017)

Title

GENERATING SETS OF SEMIGROUPS OF PARTIAL
TRANSFORMATIONS PRESERVING A ZIG-ZAG ORDER ON $\mathbb{N}$

Authors

Ilinka Dimitrova$^1$, Jörg Koppitz$^2$, Laddawan Lohapan$^3$
$^1$Department of Mathematics
Faculty of Mathematics and Natural Science
South-West University ``Neofit Rilski"
66, Ivan Mihailov Str., Blagoevgrad, 2700, BULGARIA
$^2$Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
8, Acad. G. Bonchev Str., Sofia, 1113, BULGARIA
$^3$Department of Mathematics, Faculty of Science
Khon Kaen University
123 Moo 16 Mittapap Rd., Khon Kaen, 40002, THAILAND

Abstract

This paper deals with the monoid $PF_{\mathbb{N}}$ of all partial transformations on $\mathbb{N}$ preserving a zig-zag order on $\mathbb{N}$. We determine the relative rank of $PF_{\mathbb{N}}$ modulo a set containing all idempotents and all surjections in $PF_{\mathbb{N}}$. Moreover, we show that all transformations in $PF_{\mathbb{N}}$ with finite rank can be generated by the idempotents with finite rank and the full transformation $\gamma_{0}$ with infinite rank, where $\gamma_{0}$ maps each natural number $n$ to $n+2$.

History

Received: 2017-06-14
Revised: 2017-11-15
Published: December 23, 2017

AMS Classification, Key Words

AMS Subject Classification: 20M20
Key Words and Phrases: transformation semigroup, zig-zag order, partial transformations, relative rank, generators

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
J. D. Currie, T. I. Visentin, The number of order-preserving maps of fences and crowns, Order 8(2) (1991), 133-142.

2
I. Dimitrova, J. Koppitz, On the semigroup of all partial fence-preserving injections on a finite set,Journal of algebra and its applications, 16(11) (2017), 1750223.

3
V. H. Fernades, J. Koppitz, T. Musunthia, On the semigroup of allorder-preserving transformations on a finite set, (2017), preprint.

4
G. M. S Gomes, J. M. Howie, On the ranks of certain semigroups oforder-preserving transformations, Semigroup Forum, 45 (1992), 272-282.

5
P. M. Higgens, J. D. Mitchell, N. Ruškuc, Rank properties ofendomorphisms of infinite partially ordered sets, Bulletin of the LondonMathematical Society, 38 (2006), 177-191.

6
J. M. Howie, N. Ruškuc and P. M. Higgins, On relative ranks of full transformation semigroups,Comm. Algebra, 26 (1998), 733-748.

7
J. Koppitz, L. Lohapan, Regular semigroups of partial transformationspreserving a fence $\mathbb{N}$, Novi Sad Journal of Mathematics, (2016), submitted.

8
N. Ruškuc, On the rank of completely 0-simple semigroups,Math. Proc. Cambridge Philos. Soc., 116 (1994), 325-338.

9
A. Rutkowski, The formula for the number of order-preserving self-mappings of a fence, Order 9(2) (1992), 127-137.

10
R. Tanyawong, R. Srithus, R. Chinram, Regular subsemigroups of the semigroupsof transformations preserving a fence, Asian-European Journal of Mathematics, 9(1) (2016), 1650003.

How to Cite?

DOI: 10.12732/ijpam.v117i2.4 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 117
Issue: 2
Pages: 279 - 289


$\mathbb{N}$%22&as_occt=any&as_epq=&as_oq=&as_eq=&as_publication=&as_ylo=&as_yhi=&as_sdtAAP=1&as_sdtp=1" title="Click to search Google Scholar for this entry" rel="nofollow">Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).