IJPAM: Volume 117, No. 3 (2017)

Title

THE AVERAGE ECCENTRICITY AND ECCENTRICITY
BASED GEOMETRIC-ARITHMETIC INDEX
OF TETRA SHEETS

Authors

Xiujun Zhang$^1$, Abdul Qudair Baig$^2$, Muhammad Razwan Azhar$^2$,
Mohammad Reza Farahani$^3$, Muhammad Imran$^4$
$^1$School of Information Science and Technology
Chengdu University
Chengdu, 610106, P.R. CHINA
$^2$Department of Mathematics
COMSATS Institute of Information Technology
Attock Campus, PAKISTAN
$^3$Department of Applied Mathematics
Iran University of Science and Technology
Narmak, 16844, Tehran, IRAN
$^4$Department of Mathematical Sciences
United Arab Emirates University
Al Ain, P.O. Box 15551, UNITED ARAB EMIRATES

Abstract

Among topological descriptor, connectivity indices are very important and they have a prominent role in chemistry. The average eccentricity is the mean of all the eccentricities of a graph, i.e; $avec(G)=\frac{1}{n}\sum\varepsilon_{i}.$ The eccentricity based geometric-arithmetic index is $GA_{4}(G)=\sum_{uv\epsilon
E(G)}\frac{2\sqrt{\varepsilon(u)\varepsilon(v)}}{\varepsilon(u)+\varepsilon(v)}.$ In this present paper we compute the average eccentricity and eccentricity based geometric-arithmetic index for an infinite families of tetra sheets equilateral triangular and rectangular.

History

Received: 2017-09-08
Revised: 2017-10-27
Published: January 15, 2018

AMS Classification, Key Words

AMS Subject Classification: 05C12, 05C90
Key Words and Phrases: molecular graph, average eccentricity, eccentric polynomial, geometric-arithmetic index, equilateral triangular tetra sheets, rectangular tetra sheets

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
M. Alaeiyan and J. Asadpour. Computing the MEC polynomial of an infinite family of the linear parallelogram $P(n,n)$. Optoelectron. Adv. Mater.-Rapid Commun. 6(1-2), 2012, 191-193.

2
M. Alaeiyan and R. Mojarad, J. Asadpour. A new method for computing eccentric connectivity polynomial of an infinite family of linear polycene parallelogram benzenod. Optoelectron. Adv. Mater.-Rapid Commun. 5(7), 2011, 761-763.

3
P. Dankelmann, W. Goddard and C. S. Swart. The average eccentricity of a graph and its subgraphs. Util Math., 65, (2004), 41-51.

4
K.C. Das. On geometrical-arithmetic index of graphs. MATCH Commun Math Comput Chem., 64, (2010), 619-630.

5
K.C. Das and N. Trinajsticī. Comparison between first geometric-arithmetic index and atom-bond connectivity index. Chem. Phys. Lett., 497(1-3), (2010), 149-151, doi: https://doi.org/doi.org/10.1016/j.cplett.2010.07.097.

6
A.Q. Baig, M.R. Azhar, M.R. Farahani, S. Ediz. Some eccentricity based topological indices of tetra sheets. Communications in Applied Analysis. 21(4), 2017, 631-646, doi: https://doi.org/10.12732/caa.v21i4.9.

7
M.R. Farahani, Eccentricity version of atom bond connectivity index of benzenoid family $ABC_{5}(Hk)$, World Appl. Sci. J. Chem., 21, (2013), 1260-1265. doi: $10.5829/idosi.wasj.2013.21.9.44$.

8
M.R. Farahani. Computing Eccentricity Connectivity Polynomial of Circumcoronene Series of Benzenoid Hk by Ring-Cut Method. Annals of West University of Timisoara-Mathematics and Computer Science. 51(2), (2013), 29-37. doi: $10.2478/awutm-2013-0013$

9
M.R. Farahani. The Ediz Eccentric Connectivity index and the Total Eccentricity Index of a Benzenoid System. Journal of Chemica Acta. 2, (2013), 22-25.

10
M.R. Farahani. Augmented Eccentric Connectivity Index of Molecular Graph. Int. J. Chem. Model. 6(1), (2014), ,17-23

11
M.R. Farahani. Connective Eccentric Index of Circumcoronene Homologous Series of Benzenoid $H_k$. International Letters of Chemistry, Physics and Astronomy. 13(1), (2014), 71-76. doi: $10.18052/www.scipress.com/ILCPA.32.71$

12
M.R. Farahani. Connective Eccentric Index of Linear Parallelogram $P(n,m)$. International Letters of Chemistry, Physics and Astronomy. 18, (2014), 57-62. doi: $10.18052/www.scipress.com/ILCPA.37.57$

13
M.R. Farahani, M.R. Rajesh Kanna. Fourth Zagreb index of Circumcoronene series of Benzenoid. Leonardo Electronic Journal of Practices and Technologies. 27, (2015), 155-161.

14
M.R. Farahani. Computing a New Connectivity Index for a Famous Molecular Graph of Benzenoid Family. Journal of Chemica Acta. 2, (2013), 26-31.

15
M.R. Farahani. Exact Formulas for the First Zagreb Eccentricity Index of Polycyclic Aromatic Hydrocarbons $PAH_s$. Journal of Applied Physical Science International. 4(3), 2015, 185-190. doi: $http://www.ikpress.org/issue.php?iid=588\&id=33$

16
M.R. Farahani. The Second Zagreb Eccentricity Index of Polycyclic Aromatic Hydrocarbons $PAH_k$. Journal of Computational Methods in Molecular Design. 5(2), 2015, 115-120.

17
M. Alaeiyan, M.R. Farahani, M.K. Jamil, M.R. Rajesh Kanna. The First Eccentric Zagreb Index of Linear Polycene Parallelogram of Benzenoid. Open Journal of Applied Sciences, 6, 2016,315-318. doi: $10.4236/ojapps.2016.65031$

18
M.R. Farahani, W. Gao. Second Multiplicative Zagreb eccentricity indices of $H_k$. International Journal of Applied Mathematics and Machine Learning. 4(1) (2016), 31-42. doi: $http://www.scientificadvances.co.in/artical/17/189$

19
M.R. Farahani, J. Asadrour, M.R. Rajesh Kanna. Computing the Geometric-Arithmetic Eccentricity Index of an infinite family of Benzenoid. Asian Academic Research Journal of Multidisciplinary. 3(1), 2016, 23-29.

20
M.K. Jamil, M.R. Farahani, M.R. Rajesh Kanna. About the Ediz Eccentric connectivity index of Linear Polycene parallelogram Benzenoid. International Journal of Scientific & Engineering Research, 7(1), 2016, 1469-1475.

21
W. Gao, M.R. Farahani. Computing the Reverse Eccentric Connectivity Index for Certain Family of Nanocone and Fullerene Structures. Journal of Nanotechnology. 2016, Article ID 3129561, 6 pages. doi: $10.1155/2016/3129561.$

22
M.R. Farahani, H.M. Rehman, M.K. Jamil, D.-W. Lee. Augmented Eccentric connectivity index of Polycyclic Aromatic hydrocarbons $PAH_k$. New Front Chem (AWUT). 24(2), (2015), 137-143

23
D.W. Lee, M.K. Jamil, M.R. Farahani, H.M. Rehman. The Ediz Eccentric connectivity index of Polycyclic Aromatic Hydrocarbons $PAH_k$. Scholars Journal of Engineering and Technology. 4(3), 2016, 148-152

24
M.K. Jamil, M.R. Farahani, M.R. Rajesh Kanna. First Multiplicative Zagreb Eccentricity indices of $PAH_k$. International Journal of Scientific & Engineering Research, 7(2), 2016, 1132-1135.

25
M.K. Jamil, M.R. Farahani, M.R. Rajesh Kanna, S.M. Hosamani. The Second Zagreb Eccentricity Index of Polycyclic Aromatic Hydrocarbons $PAH_k$. Journal of Chemical and Pharmaceutical Research. 2016, 8(4), 41-45.

26
Y. Gao, M.R. Farahani, W. Gao. Neighborhood Union Condition for Fractional $(k,n',m)$-Critical Deleted Graphs. Transactions on Combinatorics. 6(1), 2017, 13-19.

27
M.R. Rajesh Kanna, R.P. Kumar, M.K. Jamil, M.R. Farahani. Eccentricity Atom-Bond Connectivity Index of Polycyclic Aromatic Hydrocarbon $PAH_k$. International Journal of Pharmaceutical sciences and Research. 8(1), 201-206, 2017. doi: $10.13040/IJPSR.0975-8232.8(1).201-06$

28
Y. Huo, J.-B. Liu, A.Q. Baig, W. Sajjad, M.R. Farahani. Connective Eccentric Index of NA Nanotube. Journal of Computational and Theoretical Nanoscience. 14(4), 2017, 1832-1836. doi: $10.1166/jctn.2017.6512$

29
M. Ghorbani and A. Khaki, A note on the fourth version of geometric-arithmetic index. Optoelectron Adv. Mater. - Rapid Comm., 4(12), (2010), 2212-2215.

30
W. Gao, M. R. Farahani and M. K. Jamil. The eccentricity version of atom-bond connectivity index of linear polycene parallelogram benzoid $ABC_{5}(P(n,n))$, Acta Chim. Slov., 63, (2016), 376-379.

31
S. Hayat, M. Imran, Computation of topological indices of certain network, Applied Mathematics and Computation., 240, (2014), 213-228. doi: $https://doi.org/10.1016/j.amc.2014.04.091$

32
A.M. Hinz and D. Parisse, The Average Eccentricity of Sierpinski Graphs. Graphs and Combinatorics, 5(28), (2012), 671-686. doi: $10.1007/s00373-011-1076-4$

33
A. Ilicī. A On the extremal properties of the average eccentricity. Computers & Mathematics with Applications, 64, (2012), 2877-2885. doi: $https://doi.org/10.1016/j.camwa.2012.04.023$

34
V. Sharma, R. Goswami, A. K. Madan, Eccentric connectivity index: A novel highly discriminating topological descriptor for structure property and structure activity studies, J. Chem. Inf. Comput. Sci., 37, (1997), 273-282. doi: $pubs.acs.org/doi/abs/10.1021/ci960049h$

35
D. Vukicevic, B. Furtula. Topological index based on the ratios of geometrical arithmetical means of end vertex degrees of edges, J. Math. Chem., 46, (2009), 1369-1376. doi: $10.1007/s10910-009-9520-x$

36
Y. Tang and B. Zhou. On average eccentricity. MATCH Commun Math Comput Chem., 67, (2012), 405-423.

How to Cite?

DOI: 10.12732/ijpam.v117i3.11 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 117
Issue: 3
Pages: 467 - 479


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).