IJPAM: Volume 117, No. 3 (2017)

Title

MULTIPLE POSITIVE SOLUTIONS TO NONLINEAR
BOUNDARY VALUE PROBLEMS OF A SYSTEM FOR
GENERALIZED $p$-LAPLACIAN FRACTIONAL
DIFFERENTIAL EQUATIONS

Authors

A. Kameswara Rao
Department of Mathematics
Gayatri Vidya Parishad College of Engineering for Women
Madhurawada, Visakhapatnam, 530 048, INDIA

Abstract

In this article we study the existence of positive solutions for a coupled system of generalized $p$-Laplacian fractional order boundary value problems. We prove that the boundary value problem has at least three positive solutions by apply the five functionals fixed-point theorem. An example demonstrates the main results.

History

Received: 2017-09-23
Revised: 2017-10-27
Published: January 16, 2018

AMS Classification, Key Words

AMS Subject Classification: 34B15, 34B18
Key Words and Phrases: fractional boundary value problems, positive solutions, generalized $p$-laplacian operator, fixed point, cone

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
K. B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.

2
I. Podlubny, Fractional Differential Equations, Academic Press, New York/London/Toronto, 1999.

3
R. P. Agarwal, Formulation of Euler-Larange equations for fractional variational problems, J. Math. Anal. Appl. 272 (2002) 368-379.

4
H. Weitzner, G.M. Zaslavsky, Some applications of fractional equations, Commun. Nonlinear Sci. Numer. Simul. 8 (2003) 273-281.

5
F. C. Meral, T.J. Royston, R. Magin, Fractional calculus in viscoelasticity, an experimental study, Commun. Nonlinear Sci. Numer. Simul. 15 (2010) 939-945.

6
J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul. 16 (2011) 1140-1153.

7
A. A. Kilbas, H. H. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V, Amsterdam, 2006.

8
S. G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integral and Derivatives (Theorey and Applications), Gordon and Breach, Switzerland, 1993.

9
S. Sun, Q. Li, Y. Li, Existence and uniqueness of solutions for a coupled system of multi-term nonlinear fractional differential equations, Comput. Math. Appl. 64 (2012) 3310-3320.

10
Z. Bai, H. Lu, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl. 311 (2005) 495-505.

11
G. Wang, L. Zhang, Sotiris K. Ntouyas, Existence of multiple positive solutions of a nonlinear arbitrary order boundary value problem with advanced arguments, Electron. J. Qual. Theory Differ. Equ. 15 (2012) 1-13.

12
Y. Zhou, F. Jiao, J. Li, Existence and uniqueness for p-type fractional neutral differential equations, Nonlinear Anal. 71 (2009) 2724-2733.

13
S. Sun, Y. Zhao, Z. Han, Y. Li, The existence of solutions for boundary value problem of fractional hybrid differential equations, Commun. Nonlinear Sci. Numer. Simul. 17 (2012) 4961-4967.

14
S. Sun, Y. Zhao, Z. Han, M. Xu, Uniqueness of positive solutions for boundary value problems of singular fractional differential equations, Inverse Probl. Sci. Eng. 20 (2012) 299-309.

15
Y. Zhao, S. Sun, Z. Han, M. Zhang, Positive solutions for boundary value problems of nonlinear fractional differential equations, Appl. Math. Comput. 217 (2011) 6950-6958.

16
W. Feng, S. Sun, Z. Han, Y. Zhao, Existence of solutions for a singular system of nonlinear fractional differential equations, Comput. Math. Appl. 62 (2011) 1370-1378.

17
Y. Zhao, S. Sun, Z. Han, Q. Li, The existence of multiple positive solutions for boundary value problems of nonlinear fractional differential equations, Commun. Nonlinear Sci. Numer. Simul. 16 (2011) 2086-2097.

18
X. Yang, Z. Wei, W. Dong, Existence of positive solutions for the boundary value problem of nonlinear fractional differential equations, Commun. Nonlinear Sci. Numer. Simul. 17 (2012) 85-92.

19
X. Xu, D. Jiang, C. Yuan, Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation, Nonlinear Anal. 71 (2009) 4676-4688.

20
T. Chen, W. Liu, An anti-periodic boundary value problem for fractional differential equation with $p$-Laplacian operator, Appl. Math. Lett. 25 (2012) 1671-1675.

21
G. Chai, Positive solutions for boundary value problem of fractional differential equation with $p$-Laplacian operator, Bound. Value Probl. 2012 (2012) 1-18.

22
H. Lu, Z. Han, S. Sun, J. Liu, Existence on positive solutions for boundary value problems of nonlinear fractional differential equations with p-Laplacian, Adv. Differ. Equ. 30 (2013) 1-16.

23
M. El-Shahed, Positive solutions for boundary value problem of nonlinear fractional differential equation, Abs. Appl. Anal. 2007 (2007) 1-8. Article ID 10368.

24
H. Lu, Z. Han, S. Sun, Multiplicity of positive solutions for Sturm-Liouville boundary value problems of fractional differential equations with p- Laplacian, Bound. Value Probl. 26 (2014) 1-17.

25
J. Wang, H. Xiang, Upper and lower solutions method for a class of singular fractional boundary value problems with $p$-Laplacian operator, Abs. Appl. Anal. 2010 (2010) 1-12. Article ID 971824.

26
S. Liang, J. Zhang, Positive solutions for boundary value problems of nonlinear fractional differential equation, Nonlinear Anal. 71 (2009) 5545-5550.

27
J. G. Dix, G.L. Karakostas, A fixed-point theorem for S-type operators on Banach spaces and its applications to boundary-value problems, Nonlinear Anal. 71 (2009) 3872-3880.

28
J. Xu, Z. Wei, W. Dong, Uniqueness of positive solutions for a class of fractional boundary value problems, Appl. Math. Lett. 25 (2012) 590-593.

29
T. Chen, W. Liu, Z. Hu, A boundary value problem for fractional differential equation with $p$-Laplacian operator at resonance, Nonlinear Anal. 75 (2012) 3210-3217.

30
X. Han, H. Gao, Existence of positive solutions for eigenvalue problem of nonlinear fractional differential equations, Adv. Differ. Equ. 2012 (66) (2012) 1-8.

31
X. Zhang, L. Liu, B. Wiwatanapataphee, Y. Wu, Positive solutions of eigenvalue problems for a class of fractional differential equations with derivatives, Abs. Appl. Anal. 2012 (2012) 1-16. Article ID 512127.

32
D. X. Zhao, H. Z. Wang, W. G. Ge; Existence of triple positive solutions to a class of p-Laplacian boundary value problems, J. Math. Anal. Appl. 328 (2007), 972-983.

33
R. W. Leggett, L.R. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J. 28 (1979) 673-688.

34
H. Wang, On the number of positive solutions of nonlinear systems, J. Math. Anal. Appl. 281 (2003) 287-306.

35
G. Isac, Leray-Schauder Type Alternatives, Complementarity Problems and Variational Inequalities, US, Springer, 2006.

36
R.I. Avery, A generalization of the Leggett-Williams fixed point theorem, Math. Sci. Res. Hot-Line 3 (1999) 9-14.

How to Cite?

DOI: 10.12732/ijpam.v117i3.16 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 117
Issue: 3
Pages: 547 - 562


$p$-LAPLACIAN FRACTIONAL DIFFERENTIAL EQUATIONS%22&as_occt=any&as_epq=&as_oq=&as_eq=&as_publication=&as_ylo=&as_yhi=&as_sdtAAP=1&as_sdtp=1" title="Click to search Google Scholar for this entry" rel="nofollow">Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).