IJPAM: Volume 117, No. 3 (2017)

Title

BI-IDEALS IN $\Gamma$-SO-RINGS

Authors

K. Siva Prasad$^1$, K. Naga Koteswara Rao$^2$, M. Siva Mala$^3$
$^1$Department of Mathematics
Acharya Nagarjuna University
Nagarjuna Nagar, 522510, Guntur (D.T.), Andhra Pradesh, INDIA
$^2$Department of Science and Humanities
Nannapaneni Venkata Rao College of Engineering and Technology
Tenali, 522201, Andhra Pradesh, INDIA
$^3$Department of Mathematics
V.R. Siddhartha Engineering College
Kanuru, Vijayawada, 520007, Andhra Pradesh, INDIA

Abstract

A $\Gamma$-so-ring is a structure possessing a natural partial ordering, an infinitary partial addition and a ternary multiplication, subject to a set of axioms. The partial functions under disjoint-domain sums and functional composition is a $\Gamma$-so-ring. In this paper we introduce the notions of partial bi-ideal and bi-ideal of $\Gamma$-so-ring and we obtain the characteristics of them.

History

Received: 2017-02-07
Revised: 2017-07-22
Published: January 11, 2018

AMS Classification, Key Words

AMS Subject Classification: 16Y60
Key Words and Phrases: partial ideal, ideal, partial bi-ideal and bi-ideal

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
G.V.S. Acharyulu, Matrix representable So-rings. Semigroup Forum 1993; 46: 31-47.(DOI: 10.1007/BF02573542)

2
G.V.S. Acharyulu: A Study of Sum-Ordered Partial Semirings. PhD, Andhra University, Vishakapatnam, AP, INDIA, 1992.

3
M.A. Arbib, E.G. Manes: Partially Additive Categories and Flow-diagram Semantics. Journal of Algebra 1980; 62: 203-227.

4
Jonathan S. Golan: Semirings and their Applications. Kluwer Academic Publishers, 1999.

5
J.P. Kaushik and Moin Khan: On bi-$\Gamma$-Ideal in $\Gamma$-Semirings. Int. J. Contemp. Math. Sciences 2008; 3(26): 1255-1260.

6
E.G. Manes, D.B. Benson: The Inverse Semigroup of a Sum-Ordered Partial Semiring. Semigroup Forum 1985; 31: 129-152. (DOI: 10.1007/BF02572645)

7
M. Murali Krishna Rao: $\Gamma$-semirings-I. Southeast Asian Bulletin of Mathematics 1995; 19(1): 49-54.

8
M. Murali Krishna Rao: $\Gamma$-semirings-II. Southeast Asian Bulletin of Mathematics 1997; 21: 281-287.

9
M. Murali Krishna Rao: $\Gamma$-Semirings. PhD, Andhra University, Vishakapatnam, AP, INDIA, 1995.

10
M. Siva Mala, K. Siva Prasad: Partial $\Gamma$-Semirings. Southeast Asian Bulletin of Mathematics 2014; 38(6): 873-885.

11
M. Siva Mala and K. Siva Prasad: $(\phi,\rho)$-Representation of $\Gamma$-So-Rings. Iranian Journal of Mathematical Sciences and Informatics 2015; 10(1): 103-119. (DOI: 10.7508/ijmsi.2015.01.008)

12
M. Siva Mala and K. Siva Prasad: Ideals of Sum-Ordered partial $\Gamma$-Semirings, Southeast Asian Bulletin of Mathematics, 40(2016), 413-426.

13
K. Siva Prasad, M. Siva Mala and P.V. Srinivasa Rao: Green's Relations in Partial $\Gamma$-Semirings. International Journal of Algebra and Statistics(IJAS) 2013; 2(2): 21-28. (http://dx.doi.org/10.20454/ijas.2013.755)

14
M. Siva Mala and K. Siva Prasad: Prime Ideals of $\Gamma$-So-rings, International Journal of Algebra and Statistics(IJAS) 2014; 3(1): 1-8. (http://dx.doi.org/10.20454/ijas.2014.774)

15
M. Siva Mala and K. Siva Prasad: Semiprime Ideals of $\Gamma$-So-rings. International Journal of Algebra and Statistics(IJAS) 2014; 3(1): 26-33. (http://dx.doi.org/10.20454/ijas.2014.814)

16
K. Siva Prasad,M. Siva Mala and K. Naga Koteswara Rao: Regular $\Gamma$-So-Rings. International Journal of Pure and Applied Mathematics(IJPAM) 2017; 114(4): 695-707.

17
M. E. Streenstrup: Sum-Ordered Partial Semirings. PhD, Graduate school of the University of Massachusetts, USA, Feb 1985.

How to Cite?

DOI: 10.12732/ijpam.v117i3.3 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 117
Issue: 3
Pages: 383 - 391


$\Gamma$-SO-RINGS%22&as_occt=any&as_epq=&as_oq=&as_eq=&as_publication=&as_ylo=&as_yhi=&as_sdtAAP=1&as_sdtp=1" title="Click to search Google Scholar for this entry" rel="nofollow">Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).