IJPAM: Volume 118, No. 4 (2018)

Title

ON NEW FUZZY METRIC ORLICZ SEQUENCE SPACE

Authors

Anindita Basu
Department of Mathematics
Dr. Bhupendra Nath Dutta Smriti Mahavidyalaya
Purba Burdwan, 713407, West Bengal, INDIA

Abstract

The purpose of this work is to define a new class of sequences of fuzzy numbers using Orlicz functions and to derive several useful classes having rich structural properties. Further, a metric topological structure has been imposed, as well as, the topological behaviour has been investigated for this new class. Moreover, various inclusion relations among different classes of fuzzy sequences have been studied.

History

Received: 2017-06-14
Revised: 2018-05-07
Published: May 9, 2018

AMS Classification, Key Words

AMS Subject Classification: 40A35, 40A05
Key Words and Phrases: fuzzy number sequence, Orlicz function, metric space, completeness, solidity

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
Z. U. Ahmad, A. H. A. Bataineh,Some new sequences defined by Orlicz function. The AligarhBull of Maths. 20, No. 2, (2001).

2
Altin, Y., Properties of some sets of sequencesdefined by a modulus function, Acta Math. Sci. 29B, No. 2,(2009), 427-434.

3
Basu A., Srivastava, P. D.Generalized vector valued double sequence space using modulusfunction. Tamkang Journal of Mathematics 38,, No. 4, (2007), 347-366.

4
Basu A., Srivastava, P. D., Statistical convergence on composite vector valued sequencespace.Journal of Mathematics and Application, 29, (2007), 75-90.

5
Basu, A. and Srivastava, P. D. : $\Delta$-lacunary strongA-convergent vector valued difference sequences with respect to asequence of Orlicz functions and some inclusion relations,Int. J.Pure Appl. Math., 11, No. 3, (2004), 335-353.

6
Bektas, A., Altin, Y., The sequence space $l_M(p,q,s)$ on seminormed spaces.Indian J. Pure Appl. Math. 34, No. 4, (2003), 529-534.

7
Bharadwaj, V. K. and Singh, N., Some sequence spacesdefined by $\vert\overline{N}, p_{n}\vert$ summability and an Orliczfunction, Indian J. Pure Appl. Math., 31, No. 3, (2000), 319-325.

8
Bouchon-Meunier, B., Kosheleva, O., Kreinovich, V., Nguyen,H.T., Fuzzy numbers are the only fuzzy sets that keep invertibleoperations invertible, Fuzzy Sets and Systems, 91,(1997), 155-163.

9
Diamond P., Kloeden, P., Metric Spaces of Fuzzy Sets, Theory andApplications, World Scientific, Singapore, 1994.

10
Hukuhara, M., Integration des applications measurables dontla valeur est un compact convexe, Funkcialaj Ekvacioj,10, (1967), 205-223.

11
Laksmikantham, V., Mohapatra,R.N., Theory of fuzzy differential equations and inclusions,Taylor and Francis, New York, 2003.

12
Diamond P.,Kloeden, P., Metric Spaces of Fuzzy Sets, Theory andApplications, World Scientific, Singapore, 1994.

13
Dutta, H., A characterization of the class of statisticallypre-Cauchy double sequences of fuzzy numbers, AppliedMathematics and Information Sciences, 7, No. 4, (2013), 1437-1440.

14
Dutta, H., On some complete metric spaces of strongly summablesequences of fuzzy numbers, Rendiconti del SeminarioMatematico, 68, No. 1, (2010), 29-36.

15
Dutta, H., Basar, F., A generalizationof Orlicz sequence spaces by Ces$\grave{a}$ro mean of order one,Acta Mathematica Universitatis Comenianae, 80, No. 2,(2011), 185-200.

16
Esi, A., Isik, M., Esi, A., On Some New Sequence SpacesDefined By Orlicz Functions, Ind. J. Pure Appl. Math.,35, No. 1, (2004), 31-36.

17
Esi, A., Acikgoz, M., Some classes of difference sequences of fuzzy numbers defined by a sequence of moduli.,Acta mathematica Scientia 31 (B), No. 1, (2011),229-236.

18
Fang, J., Huang, H. On the levelconvergence of a sequence of fuzzy numbers, Fuzzy sets andsystems 147, (2004), 417-435.

19
Ghosh, D.,Srivastava, P. D. On some vector valued sequence spavces definedusing a modulus function,Indian J. Pure and Applied Math. 30, No. 8, (1999), 819-826.

20
Güngör, M., Et, M. and Altin, Y. : Strongly ( $V_{\sigma}, \lambda, q$)-summable sequences defined by Orlicz functions , Appl.Math. Comp., 157, No. 2, (2004), 561-571.

21
Isik, M., Some classes of almost convergentparanormed sequence spaces defined by Orlicz functions,Demonstratio Mathematica, XLV, No. 3, (2012),585-591.

22
Krasnoselskii, M. A., Rutisky, Y. B., Convexfunctions and Orlicz spaces, Groningen, Netherlands, 1961.

23
Kaleva, O., Seikkala, S,. On fuzzy metric spaces,Fuzzy Sets and Systems, 12 (1984), 215-229.

24
Kamthan, P. K., Gupta, M., "Sequence spaces andSeries", Marcel Dekker, New York, 1981.

25
Karakaya, V., Dutta, H., On some vector valued generalizeddifference modular sequence spaces, Filomat, 25, No. 3, (2011), 15-27.

26
Lindenstrauss, J.,Tzafriri,L., On Orlicz sequencespaces, Israel J. Math, 101, (1971), 379-390.

27
Maddox,I. J., "Elements of FunctionalAnalysis", Cambridge University press, Cambridge, (1970).

28
Maddox,I. J., Sequence spaces defined by a modulus ,Proc. Camb. Phil. Soc. 100, (1986), 161-166.

29
Matloka, M.,Sequences of fuzzy numbers,BUSEFAL 28, (1986), 28-37.

30
Mursaleen, Basarir, M. On some new sequence spaces of fuzzy numbers,Indian J. pure and applied Math 34, No. 9 (2003), 1351-1357.

31
Mursaleen, Khan, Q. A., Chishti, T. A., Some new convergentsequences spaces defined by Orlicz functions and statisticalconvergence. Italian J. Pure. Appl. Math. 9,(2001), 25-32.

32
Nanda, S., On sequences of fuzzy numbers,Fuzzy sets and systems, 33, (1989), 123-126.

33
Nanda, S., Tripathy, B. K., Absolute value of fuzzy real numbers and fuzzy sequence spaces, J. Fuzzy math, 8, No. 4, (2000), 883-892.

34
Nurray, F., Savas, E., Statistical convergence of sequences of fuzzy numbers,Mathematica Slovaca 45, No. 3, (1995), 269-273.

35
Nuray, F. and Gülcü, A.: Some new sequence spaces defined by Orlicz functions,Indian J. Pure Appl. Math., 26, No. 12, (1995), 1169-1176.

36
Parashar, S. D., Choudhary, B., Sequence spaces definedby Orlicz functions. Indian J. Pure. Appl. Math., 25, No. 4,(1994), 419-428.

37
Puri, M. L., Ralescu, D. A., Differentials for fuzzy functions, J. Math. Anal. Appl., 91, (1983), 552-558.

38
Ruckle, W. H., FK spaces in which the sequence of coordinatevectors in bounded, Can. J. Math., 25, (1973), 973-978.

39
Sargent, W. L. C., Some sequence spaces related to the $\ell^{p}$ spaces,J. London Math Soc., 35, (1960), 161-171.

40
Savas, E., A note on sequence of fuzzy numbers, Inform Sci., 124, (2000), 297-300.

41
Stefanini, L., A generalization of Hukuhara difference forinterval and fuzzy arithmetic, Working Papers Series inEconomics, Mathematics and Statistics, 1, (2008), 1-12.

42
Srivastava, P. D., Kumar, S., Generalized vector-valuedparanormed sequence space using modulus function, AppliedMathematics and Computation, 215, (2010), 4110-4118.

43
Talo, O., Basar, F., Certain spaces of sequences of fuzzy numbers defined by a modulus function, Demonstratio Mathematica, XLIII, No. 1, (2010), 139-149

44
Talo, O., Basar, F., Determination of the duals of classical sets of sequencesof fuzzy numbers and related matrix transformations, Comput. Math. Appl., 58, (2009), 717-733

45
Zadeh, L. A. Fuzzy Sets. Information and Control 8, (1965), 338-353.

How to Cite?

DOI: 10.12732/ijpam.v118i4.8 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2018
Volume: 118
Issue: 4
Pages: 931 - 947


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).